Карбид вольфрама

Советы при покупке украшений.

Первое, что вы должны сделать при покупке вольфрамовых ювелирных изделий, это убедиться, что вы знаете, из чего состоит изделие, которое вам предлагают.

Как вы уже видели, эти два материала отличаются по прочности и химическому составу. Если вы ищете долговечность, убедитесь, что ювелирные изделия, которые вы покупаете, сделаны именно из карбида вольфрама.

Вы должны также спросить о всех других металлах, которые содержит определенное вольфрамовое изделие.

Существуют некоторые драгоценности, которые являются более дешевыми, и часто причиной является то, что они содержат кобальт вместо никеля (мы уже говорили, почему кобальт не является предпочтительным).

Даже если драгоценности маркированы как «карбид вольфрама», вы все равно должны это проверить, поскольку некоторые изделия могут быть сделаны с кобальтом: необычно низкая цена — один из признаков того, что это так.

В целом, избегайте покупать вольфрамовые драгоценности, если нет указания, что они содержат. Между прочим, это правило распространяется на любые украшения, которые вы покупаете.

Применение

Кольцо (ювелирное украшение) из карбида вольфрама с гладкой шлифованной поверхностью.

Кольцо (ювелирное украшение) из карбида вольфрама с огранкой. Карбид вольфрама активно применяется в технике для изготовления инструментов, требующих высокой твёрдости и коррозионной стойкости, а также для износостойкой наплавки деталей, работающих в условиях интенсивного абразивного изнашивания с умеренными ударными нагрузками. Этот материал находит применение в изготовлении различных резцов, абразивных дисков, свёрл, фрез, долот для бурения и другого режущего инструмента. Марка твёрдого сплава, известная как «победит», на 90% состоит из карбида вольфрама.

Активно применяется в газотермическом напылении и наплавке в виде порошкового материала для создания износостойких покрытий. Так, рэлит, представляющий собой эвтектику WC−W2C, используется для наплавки на буровой инструмент и на другие изделия подвергаемые абразивному износу. Один из основных материалов, использующихся для замены гальванического хромирования методом высокоскоростного газопламенного напыления.

В качестве материала бронебойных сердечников

Бронебойный подкалиберный снаряд с отделяемым поддоном к британской пушке 76,2 мм Второй мировой войны и его твердосплавный (WC) сердечник. Особо следует выделить использование карбида вольфрама для изготовления бронебойных сердечников пуль и снарядов. Начало широкого применения твердосплавных (основа WC на кобальтовой связке, типов РЭ-6 (7,62-мм патрон с пулей БС-40), ВК6, ВК8 и аналогичных) бронебойных сердечников, для замены выполненных из закалённой стали, приходится на 1940-е годы, и было связано с настоятельной необходимостью повышения эффективности бронепробивного действия боеприпасов в существующих калибрах стрелкового и артиллерийского вооружения, вызванной быстрым наращиванием защиты практически всех видов вооружения наземной техники. Наиболее широко такие боеприпасы в калибрах стрелкового оружия и малокалиберной артиллерии применялись вооруженными силами Германии (7,92-мм патрон с пулей SmK(H)) и СССР (14,5-мм патрон с пулей БС). В частности на вооружении сухопутных войск и ВВС Германии состояли боеприпасы с твердосплавными сердечниками в калибрах 15×96 мм/MG 151, масса пули 0,052 кг; 20×138 мм/S-18/1100, 30×184 мм/MK-101, MK-103 и далее, включая калибр 50 мм H-Pzgr и более крупные калибры противотанковой артиллерии.

В послевоенное время, в 1960 – 1970-х годах в Швейцарии и ФРГ были разработаны и приняты на вооружение новые подкалиберные боеприпасы с твердосплавными сердечниками, в том числе малокалиберной артиллерии в калибрах 20×128 мм «Эрликон-Контравес» и 20×139 мм «Испано-Сюиза», выпускавшиеся по лицензии целым рядом стран. По мере накопления опыта их применения пришло также понимание недостатков металлокерамических сердечников, связанное, в первую очередь, с их склонностью к разрушению от изгибающих напряжений при взаимодействии с бронезащитой под большими углами от нормали. При увеличении угла взаимодействия с броней (от нормали) эффективность бронепробивного действия боеприпасов с металлокерамическим сердечником снижалась. Кроме того, такие боеприпасы показали заметное снижение эффективности при стрельбе по разнесённым и экранированным бронепреградам вследствие их разрушения в результате резкого снятия напряжений сжатия после пробития первой преграды (экрана). Во второй половине 1970-х годов благодаря успехам в технологии вольфрамовых сплавов, позволившим повысить их пластичность до 5 – 7%, были разработаны подкалиберные боеприпасы нового поколения, активная часть которых выполнялась уже из тяжёлого сплава на основе вольфрама (W-Ni,Co) или обеднённого урана (U-0,75% Ti), обладавших определённым запасом пластичности. Новые выстрелы БПС с отделяемыми частями, были лучше приспособлены для действия по бронецелям 1980 – 2000-х годов.

Другие применения

Применяется при производстве сверхпрочных шариков для шариковых ручек размером 1 . Полировка этих шариков проводится в специальной машине на протяжении нескольких дней с использованием малого количества алмазной пасты.

Применяется для изготовления браслетов для дорогих швейцарских часов. Также карбид вольфрама приобрёл большую популярность при изготовлении ювелирных изделий — колец, кулонов — в которых его износостойкость позволяет гарантировать «вечный» блеск изделий.

Карбид вольфрама используется в виде подложки для платинового катализатора.

Также используется при изготовлении торцевых уплотнений валов механизмов (например в насосах) в случаях, когда контактирующая среда имеет высокую абразивность и/или вязкость.

Характеристики ножей из карбида вольфрама

Впервые ножи из карбида вольфрама появились в Италии в 2017 году. Полученный сплав позволил получить ножи с прочностью 71 HRC.

Внешние характеристики следующие:

  1. Форма в виде ягнячьего копыта — прямое лезвие с закруглённым концом.
  2. Дополнен длинным обухом, который позволит удобно расположить палец и руку при сильном нажатии.
  3. Литая рукоятка изготовлена с помощью трёхмерной печати из стекловолокна.
  4. Рукоятка имеет прямые скосы, которые делают удобным расположение пальцев.

При производстве итальянские мастера используют нанотехнологии для скрепления рукоятки и лезвия. Сохраняет остроту лезвий в 20 раз дольше, чем обычные ножи.


Кромочная пила из карбида.

Кроме этого, этот материал используется для производства металлообрабатывающих инструментов, ювелирных изделий или для покрытия наручных часов.

Часто, из карбида вольфрама делают обручальные кольца, которые станут символом прочных семейных уз. Такие кольца переживут любой удар или другое внешнее воздействие.

Вольфрам — самый тугоплавкий металл

Вольфрам — простое химическое вещество, элемент таблицы Менделеева, переходный металл. Записывается в виде латинской буквы W. Название получил от минерала вольфрамит, известного рудокопам с 16-го века. Сам минерал Wolf Rahm (в переводе с немецкого — «волчья пена») получил свое название из-за того, что осложнял получение олова из оловосодержащих пород. При выплавке примеси вольфрама образовывали соединения с оловом и поднимались на поверхность в виде пены; на языке рудокопов «пожирают олово как волк овцу».

Относится к редким элементам, по распространенности на планете занимает 57-е место. Встречается только в минералах, состоящих из соединений разных металлов. В добывающей индустрии наиболее значимы вольфрамит, шеелит, фербелит, гюбнерит. В месторождениях концентрация вольфрама редко превышает 2%.

Как отдельный химический элемент вольфрам был открыт в конце XVIII века. Известный шведский химик К. Шееле проводил эксперименты с минералом тунгстен (позже переименованным в его честь и названным шеелитом). Обработав его азотной кислотой, ученый выяснил, что образец представляет собой соль неизвестной кислоты. Его ученики продолжили работы с интересным минералом и через два года настойчивых исследований выделили неизвестный науке металл, который назвали вольфрамом. Большого шума это открытие не вызвало, т.к. новый металл был чрезвычайно тугоплавким и в мире просто еще не существовало печей, способных обеспечить необходимую температуру для выплавки. Зато в ХХ веке вольфрам произвел в промышленности настоящую революцию.

Электропечи с максимальной температурой нагрева +1300 °СЭлектропечи с максимальной температурой нагрева +1100 °С

Свойства

Светло-серебристый блестящий металл, напоминающий платину. Очень плотный, тяжелый, твердый, но, при этом, хрупкий. Плавится при t около +3400 °C, это самый высокий показатель среди металлов. (Теоретически более тугоплавким может быть трансактиноид сиборгий, но это короткоживущий радиоактивный элемент №106, получаемый искусственно в результате ядерного синтеза.) В нормальных условиях вольфрам плохо поддается механической обработке, зато при нагреве свыше +1600 °С его можно ковать, прокатывать, вытягивать в тонкую нить. Парамагнетик (может намагничиваться во внешнем магнитном поле), обладает высоким электрическим сопротивлением.

В химических реакциях может проявлять валентность от 2 до 6, но все устойчивые соединения образованы W (VI). При температуре в районе +20 °С не поддается коррозии в воде и на воздухе. Очень слабо реагирует с соляной, фтороводородной и неконцентрированной серной кислотами. А вот с перекисью водорода, азотной кислотой, смесью азотной и фтороводородной кислот, «царской водкой» взаимодействует легко. При высокой t и в присутствии окислителей вступает в реакции со щелочами. Образует оксиды, вольфраматы (соли вольфрамовых кислот), соединения с галогенами, серой, углеродом.

В метаболизме животных и человека не участвует.

Вольфрамовая пыль, как и пыль любого другого металла, оказывает раздражающее влияние на органы дыхания.

Это интересно

На Земле существует несколько типов архебактерий и бактерий, использующих в своих обменных процессах ферменты с вольфрамом. Ученые считают, что они ведут свое развитие с ранней архейской эры (около 4 млрд. лет назад), когда этот металл играл важную роль в создании и развитии жизни на планете.

Вольфрам — крайне востребованный в промышленности металл. Подробнее о его применении мы расскажем в следующей статье.

Нанесение защитного слоя на деталь

Вследствие описанных выше факторов,  при покрытии карбидами вольфрама поверхности деталей возрастают не только их износостойкость, но также стойкость против эрозии и окалины. Фактор хрупкости снимается за счёт чрезвычайно малой толщины наносимого карбидсодержащего слоя, который в большинстве случаев не превышает десятков микрон. Такой способ применения карбидов вольфрама более целесообразен: наличие пластичной подложки основного металла снижает чувствительность поверхности от вредного воздействия циклически возникающих рабочих нагрузок, в то время, как высокая поверхностная твёрдость способствует стойкости против износа. Сокращается и расход металлов/сплавов.

Практический диапазон толщины покрытий, содержащих карбиды вольфрама – 100…250 мкм.

Применяются следующие методы нанесения поверхностных покрытий из карбида вольфрама:

  1. Газопламенное напыление.
  2. Плазменное напыление.
  3. Детонационное нанесение.

При газопламенном напылении мелкодисперсный порошок карбида расплавляется теплом кислородно-ацетиленового пламени, температура в факеле которого достигает 20000С. Скорость движения частиц в газовом потоке достигает 150…200 м/с, вследствие чего они приобретают большую кинетическую энергию. Она позволяет частицам легко внедряться в микропустоты на поверхности основного металла, а застывая там, образовывать прочное покрытие.

Технология  газопламенного напыления обладает существенным недостатком. Наличие кислорода в пламени способствует частичному выгоранию углерода. Поэтому более качественными процессами напыления, являются технологии с применением плазмы. Высокотемпературная (более 50000С) плазма исключает попадания в зону обработки даже атомарного кислорода, поэтому химсостав конечного карбидсодержащего слоя полностью соответствует исходному. Кроме того, производительность плазменного напыления выше, чем газопламенного, т.к. в последнем случае рабочую камеру периодически приходится очищать от остатков выделившегося углерода методом аргонной откачки.

При детонационном напылении деталь помещают в подвижную среду, где находятся взвешенные частицы карбидов вольфрама. Объём герметизируется, после чего среда поджигается. Возникающие в результате высокие температуры резко увеличивают скорость перемещения взвешенных частиц, которые равномерным слоем откладываются на поверхности детали.

Решения для всех отраслей промышленности

Технологии Wolfram широко используются многими компаниями для форсирования инновационных процессов, легкого и удобного доступа к данным и их анализа, а также решения сложных и неординарных научных и технических проблем. Наши продукты и услуги предлагают интуитивно понятные и мощные инструменты для разработки алгоритмов, числовых и символьных вычислений, анализа данных, вычислительной геометрии, генерирования отчетов, машинного обучения, обработки изображений, симуляции и моделирования сложных систем, и многого другого.

Промышленные и НИОКР разработки

Аэрокосмическая и оборонная промышленность » Электротехника » Машиностроение »

Биотехнология и медицина

Биоинформатика » Медицинская визуализация » Биологические науки »

Производство энергии

Науки об окружающей среде » Геология » Нефтедобывающая промышленность »

Финансовые услуги

Финансовый инжиниринг и финансовая математика » Управление финансовыми рисками » Актуарное дело »

Разработка программного обеспечения

Разработка интерфейсов » Разработка программного обеспечения » Веб-разработка »

Наука о данных

Наука о данных » Статистика » Исследование операций »

Применение[ | ]

Главное применение вольфрама — как основа тугоплавких материалов в металлургии.

Металлический вольфрам

Нить накаливания

  • Тугоплавкость вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
  • Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).
  • Вольфрам используют в качестве электродов для аргонно-дуговой сварки.
  • Сплавы вольфрама, ввиду его высокой температуры плавления, получают методом порошковой металлургии. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей.
  • Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.
  • Высокая плотность вольфрама делает его удобным для защиты от ионизирующего излучения. Несмотря на бо́льшую плотность по сравнению с традиционным и более дешёвым свинцом, защита из вольфрама оказывается менее тяжёлой при равных защитных свойствах или более эффективной при равном весе. Из-за тугоплавкости и твёрдости вольфрама, затрудняющих его обработку, в таких случаях используются более пластичные сплавы вольфрама с добавлением никеля, железа, меди и др. либо взвесь порошкообразного вольфрама (или его соединений) в полимерной основе.

Соединения вольфрама

  • Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
  • Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка.
  • Некоторые соединения вольфрама применяются как катализаторы и пигменты.
  • Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.
  • Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Другие сферы применения

Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Рынок вольфрама

Цены на металлический вольфрам (содержание элемента порядка 99 %) на конец 2010 года составляли около 40—42 долларов США за килограмм, в мае 2011 года составляли около 53—55 долларов США за килограмм. Полуфабрикаты от 58 USD (прутки) до 168 (тонкая полоса). В 2014 году цены на вольфрам колебались в диапазоне от 55 до 57 USD.

Тяжелые вольфрамовые сплавы

Вольфрам — самый тугоплавкий металл из известных человечеству. Он также имеет очень высокую плотность, одну из самых высоких среди металлов, что, в свою очередь, наделяет вольфрам отличными радиационно-защитными свойствами

Тугоплавкость и высокая плотность — эти два основных свойства и определили его чрезвычайную важность в современных технологиях и направления его использования

Но современные направления науки и техники порой требуют от тугоплавких металлов, и в частности, от вольфрама, такой совокупности свойств, которую вольфрам в чистом виде не силах обеспечить. К примеру, часто возникает необходимость изготовления деталей очень сложной формы. Вольфрам является довольно хрупким материалом при нормальных условиях, что делает его обработку затруднительной. Другой пример — высокая электропроводность при высоких температурах. Электропроводность вольфрама не сравнится с электропроводностью меди, но при высоких температурах медные контакты использовать просто невозможно.

Поэтому в таких случаях применяют так называемые тяжелые сплавы на основе вольфрама или просто вольфрамовые сплавы.Чаще всего это сплавы вольфрама с никелем, железом, медью или сразу с несколькими металлами. Содержание вольфрама, как правило, составляет от 90% до 98% по массе. Фактически, это не совсем сплавы, а так называемые псевдосплавы. Такое название они получили из-за особенностей технологии их производства. Дело в том, что входящие в состав вольфрамовых псевдосплавов компоненты имеют существенно различные физические свойства, главным образом, температуру плавления. Сделать из них сплав в привычном понимании почти невозможно, т.к. при температуре плавления вольфрама большинство металлов находятся в состоянии газов или летучих жидкостей. Поэтому псевдосплавы изготавливают методом порошковой металлургии. Порошки компонентов псевдосплава смешиваются, прессуются и спекаются в присутствии жидкой фазы более легкоплавких металлов и твердой фазы вольфрама. Медь, никель и железо служат связующим веществом для вольфрамовых зерен, что обеспечивает увеличение пластичности, обрабатываемости и электропроводности.

Марки вольфрамовых сплавов, получивших наибольшую популярность в России:

  • ВНЖ 7-3 (с содержанием 7% никеля и 3% железа)
  • ВНЖ-95 (с содержанием 3% никеля и 2% железа)
  • ВНЖ-97.5 (с содержанием 1.5% никеля и 1% железа)
  • ВНМ 5-3 (с содержанием 5% никеля и 3% меди)
  • ВНМ 3-2 (с содержанием 3% никеля и 2% меди)
  • ВНМ 2-1 (с содержанием 2% никеля и 1% меди)
  • ВД-20 (с содержанием 80% вольфрама и 20% меди)
  • ВД-25 (с содержанием 75% вольфрама и 25% меди)
  • ВД-30 (с содержанием 70% вольфрама и 30% меди)

Некоторые области применения вольфрамовых сплавов:

Главные области применения вольфрамовых сплавов определяются их свойствами. К примеру, одним из важнейших свойств вольфрамовых сплавов являются высокие показатели радиационной защиты, что главным образом определяется высокой плотностью этих сплавов (вольфрамовые сплавы более чем в 1,5 раза тяжелее свинца). Тяжелые вольфрамовые сплавы были признаны лучшим материалом для защиты от гамма-излучения, по сравнению с традиционными свинцом, сталью, чугуном и водой. Данное свойство обусловило широкое применение сплавов ВНЖ и ВНМ в следующих областях:

  • Емкости, контейнеры для хранения радиоактивных веществ
  • Детали приборов радиоактивного каротажа
  • Оборудование неразрушающего контроля
  • Дозиметрическое оборудование и радиационный контроль
  • Коллиматоры, защитные экраны и другие детали различного оборудования

Кроме этого, вольфрамовые сплавы широко применяются для изготовления различного рода утяжелителей, электрических контактов, а также комплектующих продукции оборонной промышленности.

Помимо вольфрамовых псевдосплавов, также получили распространение и сплавы на основе молибдена.

ООО «ЕРГАРДА» изготовит изделия любой сложности из вольфрамовых сплавов по Вашему заказу.

Примечания[ | ]

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047—1078. — doi:10.1351/PAC-REP-13-03-02.
  2. 12345 Tungsten: physical properties (англ.). WebElements. Дата обращения 17 августа 2013.
  3. CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-134. — 2828 p. — ISBN 1420090844.
  4. См. обзор измерений в: Tolias P. (2017), Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications, arΧiv:1703.06302
  5. 1234Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 418. — 623 с. — 100 000 экз.
  6. Теплофизические свойства вольфрама
  7. Большая советская энциклопедия Гл. ред. А. М. Прохоров. — 3-е изд. — М. : Сов. энцикл., 1969 – 1978
  8. Титан — металл будущего (рус.).
  9. Рипан Р., Четяну И. Неорганическая химия. Химия металлов. — М.: Мир, 1972. — Т. 2. — С. 347.
  10. Рипан Р., Четяну И. Неорганическая химия. Химия металлов. — М.: Мир, 1972. — Т. 2. — С. 348.
  11. Brian Wheeler. Tungsten Shielding Helps at Fukushima Daiichi(неопр.) . Power Engineering Magazine (1 июля 2011).
  12. Murata Taisuke, Miwa Kenta, Matsubayashi Fumiyasu, Wagatsuma Kei, Akimoto Kenta, Fujibuchi Toshioh, Miyaji Noriaki, Takiguchi Tomohiro, Sasaki Masayuki, Koizumi Mitsuru. Optimal radiation shielding for beta and bremsstrahlung radiation emitted by 89Sr and 90Y: validation by empirical approach and Monte Carlo simulations // Annals of Nuclear Medicine. — 2014. — 10 мая (т. 28, № 7). — С. 617—622. — ISSN 0914-7187. — doi:10.1007/s12149-014-0853-6. []
  13. Kobayashi S., Hosoda N., Takashima R. Tungsten alloys as radiation protection materials // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. — 1997. — Май (т. 390, № 3). — С. 426—430. — ISSN 0168-9002. — doi:10.1016/S0168-9002(97)00392-6. []
  14. Soylu H. M., Yurt Lambrecht F., Ersöz O. A. Gamma radiation shielding efficiency of a new lead-free composite material // Journal of Radioanalytical and Nuclear Chemistry. — 2020. — 17 марта (т. 305, № 2). — С. 529—534. — ISSN 0236-5731. — doi:10.1007/s10967-015-4051-3. []
  15. по данным «Цены на вольфрам»
  16. Федонкин М. А. Сужение геохимического базиса жизни и эвкариотизация биосферы: причинная связь // Палеонтологический журнал. — 2003. — № 6. — С. 33—40
  17. 12Audi G., Kondev F. G., Wang M., Huang W. J., Naimi S. The Nubase2016 evaluation of nuclear properties (англ.) // Chinese Physics C. — 2020. — Vol. 41, iss. 3. — P. 030001-1—030001-138. — doi:10.1088/1674-1137/41/3/030001. — Bibcode: 2017ChPhC..41c0001A.
  18. F. A. Danevich et al. α activity of natural tungsten isotopes (англ.) // Phys. Rev. C : journal. — 2003. — Vol. 67. — P. 014310. — doi:10.1103/PhysRevC.67.014310.
  19. C. Cozzini et al. Detection of the natural α decay of tungsten (англ.) // Phys. Rev. C : journal. — 2004. — Vol. 70. — P. 064606. — doi:10.1103/PhysRevC.70.064606.

СТРУКТУРА

Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий