Смазки пластичные: характеристики, применение, свойства

Вязкость

Этот показатель характеризует действие пластичной смазки непосредственно в месте трения после ее перехода в жидкое состояние. В смазочных жидких маслах вязкость является постоянной величиной. В пластичных она напрямую зависит от скорости вращения узла и от температуры, поэтому этот показатель называется – эффективной вязкостью.

Увеличение скорости перемещения приводит к снижению этого показателя. Если температура постоянна, то он выражается вязкостно-скоростной характеристикой. Когда скорость перемещения трущихся поверхностей остается постоянной, а температура изменяется, он определяется вязкостно-температурной характеристикой. Повышение температуры в районе трущихся узлов существенно снижает вязкость пластичной связки.

Типы пластичных смазок

Кальцевые (солидолы) – влагостойкие, могут содержать до 4% влаги, имеют хорошую механическую стабильность, имеют низкий коэффициент внутреннего трения, смешиваясь с водой, не образуют эмульсии. Используются в условиях высокой влажности при температуре -30…+55 °С. Расплавляясь, теряют содержащуюся в них воду, после охлаждения не восстанавливают свои физико-химические свойства.

Натриевые – чувствительны к влаге, соединяясь с водой, образуют эмульсию и выделяют коррозирующие щелочи и кислоты. Применяются при отсутствии контакта с водой при температуре -30…+150 °С. Обладают хорошей маслянистостью, хорошими уплотняющими свойствами и восстанавливают свои характеристики после расплавления.

Кальциево-натриевые – по влагостойкости и температурному диапазону занимают промежуточное место. Они эффективны для применения в условиях небольшой влажности при температуре 0…+110 °С.

Литиевые – в основе лежит литиевое мыло, имеющее положительные свойства кальциевых и натриевых смазок, но без их недостатков. Имеют хорошую маслянистость, отличную температурную устойчивость. Применяются при температуре -50…+150 °С при возможности проникновения воды.

Смазки с синтетическими маслами – в качестве масла используют полиальфаолефины эфирных и силиконовых масел, которые отличает большая устойчивость против старения, чем у минеральных масел. Загустители – литиевое мыло, бентонит. Имеют очень малые потери на трение и работают при температуре -70…+150 °С.

Краткий ассортимент пластичных смазок приведен в .

Таблица 5.2 – Ассортимент пластичных смазок
НаименованиеЗаменаОбласть применения
Смазка индустриальная ИП-1ИП-1-Л, ИП-1-ЗДля централизованной смазки подшипников скольжения и качения, направляющих и других узлов трения, для закладной смазки зубчатых муфт.
Солидол синтетический УСС-1УСС-2Для смазки под давлением подшипников скольжения и качения в холодное время года в условиях повышенной влажности, для смазки пресс-маслёнками.
Консталин УТС-1УТС-2Для смазки подшипников скольжения и качения, для цепных передач в условиях, полностью исключающих контакт смазки с водой, для механизмов доменного оборудования: втулок барабанов лебёдки управления конусами, подшипников и шарниров направляющих устройств, подшипников качения скиповой лебёдки, для кузнечно-прессового оборудования.
Индустриально-металлургическая №10Для смазки бронзовых подшипников скольжения, рабочих валков прокатных клетей и для других узлов трения, работающих при повышенных нагрузках и средних скоростях.
Графитная УСС-АДля смазки тяжелонагруженных открытых зубчатых передач, централизованной смазки высоконагруженных мест трения. Для цепей лебёдки управления конусами.
ЦИАТИМ 201, 202Для смазки подшипников скольжения и качения (со скоростью вращения до 3000 об./мин. – 201; со скоростью вращения до 30000 об./мин. – 202).
Литиевая 203, 208Для смазки узлов трения в условиях высоких удельных давлений (до 500 МПа – 203; до 2400 МПа – 208).
КанатнаяДля смазки стальных канатов.

Основные свойства

В обычном состоянии пластичные смазки представляют собой высоковязкую среду. Многие похожи на твердое тело, которое способно сохранять исходную форму. Однако под действием нагрузок и повышенных температур вязкость составов уменьшается. Такие их особенности обусловливают:

  • увеличение эксплуатационного ресурса пар трения или качения;
  • снижение износа узлов, зубьев и шестерней в механизмах;
  • правильное распределение нагрузки для более плавного и равномерного износа, защиту от агрессивных сред, пара и других вредных воздействий. Такими способностями обладают отдельные виды смазок.

Классификация пластичных смазок

Классификация пластичных смазок основывается на типе загустителя и присадок, которые используются в процессе изготовления.

  1. Литиевые – производятся с добавлением литиевого мыла, отличаются долговечностью и нетерпимостью к воздействию воды.
  2. Натриевые – в основе загустителя выступают соли натрия, отличатся небольшой стоимостью и универсальностью. Не подходят для работы при высоких температурах и под воздействием воды.
  3. Алюминиевые – предназначены для работы при высоких температурах, а также в условиях повышенной влаги, когда требуются особые антикоррозийный свойства.
  4. Силиконовые – отличается высокой устойчивостью к воде, ее очень тяжело смыть. Обеспечивает минимальное трение рабочих механизмов. Также этот тип можно использовать как для металлических деталей, так и для изготовленных из резины и полимеров.
  5. Тефлоновые – может использоваться при высоких температурах, до 250 градусов, не изменяя консистенции, оставаясь густой и вязкой. Покрывает механизмы масленой пленкой, которая обладает отличными антифрикционными свойствами. Может применяется в оборудовании, где требуется обеспечить непроводимость тока.
  6. Полиуретановые – применяются в пищевом и медицинском оборудовании, так как абсолютно безвредные для человеческого организма. Отличаются тем, что со временем полностью разлагаются природным образом.

Универсальных смазок, в понимании этого слова, не существует. Да в некоторых схожих сферах, можно использовать один и тот же состав, но его лучше подбирать в каждом отдельном случае. Различные марки пластических смазок имеют подробные инструкции, указывающие как, в каких условиях и механизмах можно их использовать.

Состав, емкость смазок

По консистенции и физическим свойствам минеральные покрытия делятся на 3 группы:

  • масла;
  • пластичные, имеющие кремообразную консистенцию;
  • твердые.

Основой для изготовления минеральной смазки является минеральное масло. Его содержание составляет 80-10%. Оставшаяся часть — загустители и присадки, добавляемые в пропорции 2:1. Наиболее распространенные загустители – кальциевые и натриевые. Вместо них могут добавляться твердые углеводороды, например, парафин, бериллиевые мыла.

Масла для производства минеральных покрытий получают из отходов нефтеперерабатывающего производства. Процесс заключается в следующем: после атмосферной перегонки нефти остается бензин, керосин, дизтопливо и остаток — мазут. Далее в процессе вакуумной дистилляции из мазута получают моторные топлива, масла, масляный гудрон. Для получения качественного смазочного материала без примесей масла очищаются серной кислотой, щелочами. Получить качественно новый продукт с усиленными свойствами помогают различные присадки.

Минеральные смазочные материалы можно приобрести в виде:

  • аэрозоля;
  • пластичной смазки.

В аэрозолях продается антикоррозионное минеральное масло, подходящее для бытового использования, электромеханического оборудования, спецтехники.

Пластичные материалы промышленного назначения реализуются в больших объемах, как правило — ведрах емкостью 20 л или более, бочках по 180 кг.

В производстве могут использоваться масла, пластичные покрытия. Выбор материала зависит от сферы применения.

Преимущества смазок — способность сохранять форму и плотность при незначительных нагрузках. По мере увеличения рабочей нагрузки они превращаются жидкость с высокой степенью вязкости.

Маркировка

В соответствии с перечисленными свойствами и составами осуществляется маркировка смазок. Ранее она была произвольной, выражалась буквенным или цифровым наименованием, а также по названию производителя. Позднее процесс маркировки был стандартизирован. Смазки стали обозначаться буквами:

  • Область применения обозначается буквами: У – универсальная, И – индустриальная, Ж – железнодорожная, П – прокатная.
  • В зависимости от температуры использования, универсальные пластичные смазки маркируются буквами: Т – тугоплавкая, С – среднего плавления, Н – низкотемпературная.
  • Специфические свойства обозначаются буквами: З – защитная, В – влагостойкая, М – морозостойкая, К – канатная.

Например, пластичная смазка УНЗ обозначает, что она универсальная, низкотемпературная, защитная.

Помните, что эффективная работоспособность любого механического оборудования или агрегата зависит от правильно подобранной смазки. Ее использование позволит существенно снизить силу трения в сопряженных узлах и продлит срок службы механического устройства.

Таблица 4. Требования к пластичным смазкам, обусловленные конструкцией узла трения

Конструкция узла трения Характеристики смазочного материала
Конструкционные материалы деталей, образующих пару трения Способность работать в парах трения металл/металл, металл/эластомер, металл/пластмасса,
пластмасса/эластомер и др.
Конструкционные материалы, контактирующие с пластичной смазкой Совместимость с пластмассами и эластомерами
Особенности системы смазки Вязкость смазочного материала, его консистенция

Смазочные материалы могут оказывать разрушающее воздействие как на конструкционные материалы деталей, образующих пары трения, так и на материалы деталей, контактирующих со смазкой и не входящих в пару трения

В этой связи при выборе пластичных смазок большое внимание уделяется их способности работать в конкретных парах трения (например, металл/металл, металл/эластомер, металл/пластмасса, пластмасса/эластомер и др.), а так же общей совместимости с пластмассами и эластомерами.. Cмазочные системы, которые бы могли эффективно работать с несколькими группами пластичных смазок, обладающими различными эксплуатационными характеристиками, имеют очень сложную конструкцию, что затрудняет эксплуатацию технических изделий, и экономически нецелесообразны

Поэтому на практике применяют смазочные системы, рассчитанные на материалы определенной группы и определенной вязкости. и экономически бывает нецелесообразным. Поэтому выбор смазки зачастую определяется особенностями и параметрами смазочной системы, обслуживающей узел трения.

Cмазочные системы, которые бы могли эффективно работать с несколькими группами пластичных смазок, обладающими различными эксплуатационными характеристиками, имеют очень сложную конструкцию, что затрудняет эксплуатацию технических изделий, и экономически нецелесообразны. Поэтому на практике применяют смазочные системы, рассчитанные на материалы определенной группы и определенной вязкости. и экономически бывает нецелесообразным. Поэтому выбор смазки зачастую определяется особенностями и параметрами смазочной системы, обслуживающей узел трения.

Помимо этого, любые смазочные материалы, включая пластичные смазки, являются неотъемлемым конструктивным элементом узлов трения, во многом определяющим свойства их надежности (безотказность, долговечность, ремонтопригодность и сохраняемость), показатели эффективности работы трибосопряжений (потери на трение, механический КПД) и особенности их влияние на окружающую среду (уровень шумов, вибраций и т.п.).

В связи с этим при выборе пластичных смазок особую группу составляют требования к работе узла трения, обусловленные совокупностью эксплуатационных и конструктивных факторов (табл. 5).

LGLT 2 – Низкотемпературная пластичная смазка SKF

LGLT 2 – высококачественная пластичная смазка на основе синтетического диэфирного масла и литиевого мыла. Синтетическое масло особо устойчиво к влиянию температуры, поэтому LGLT 2 может использоваться при низких температурах (до -55 °C) и высоких частотах вращения.
Области применения:Веретена текстильных машин Шпиндели металлорежущих станковПриборы и контрольное оборудование Малые электродвигатели Роликовые коньки Принтеры Робототехника

Рабочие условия подшипников
 ТемператураНизкая и средняя
 Частота вращенияСредняя и очень высокая
 НагрузкаНизкая
 Вертикальный валo
 Быстрое вращение наружного кольца 
 Колебательное движение
 Сильные вибрации
 Ударная нагрузка или частые пускиo
 Малошумность+
 Малое трение+
+ Рекомендуется0 Допустимо– Не подходит

Для получения подробной информации вы можете скачать брошюру – ссылка.

Роль пластичной смазки в работе подшипника

Пластичные смазки, используются повсеместно. Они обслуживают промышленные станки и конвейеры, сельскохозяйственную технику и городской электротранспорт, подшипниковые узлы, работающие на предельных скоростях и при высоких температурах

Подобные условия эксплуатации диктуют особое внимание к качеству продукта, соответствию всех его характеристик ГОСТу и условиям использования. Пластические смазки позволяют экономить на смазочном материале и успешно применяются как закладные и консервационные, обеспечивая герметичную защиту узла

Свойства смазки определяют компоненты, которые входят в её состав: масло, загуститель, добавочные модифицирующие присадки.

Одним из важнейших условий работы подшипника является правильная его смазка. Недостаточное количество смазочного материала или неправильно выбранный смазочный материал неизбежно приводит к преждевременному износу подшипника и сокращению срока его службы.

Пластичная смазка определяет долговечность подшипника не в меньшей мере, чем материал его деталей. Особенно возросла роль смазки с повышением напряженности работы узлов трения: с повышением частот вращения, нагрузок и в первую очередь температуры (наиболее значительного фактора, обусловливающего долговечность смазочного материала в подшипнике).

Пластичная смазка в подшипниковых узлах выполняет следующие основные функции:

  • образует между рабочими поверхностями необходимую упруго гидродинамическую масляную пленку, которая одновременно смягчает удары тел качения о кольца и сепаратор, увеличивая этим долговечность подшипника и снижая шум при его работе;
  • уменьшает трение скольжения между поверхностями качения, возникающее вследствие их упругой деформации под действием нагрузки при работе подшипника;
  • уменьшает трение скольжения, возникающее между телами качения, сепаратором и кольцами;
  • служит в качестве охлаждающей среды;
  • способствует равномерному распределению тепла, образующегося при работе подшипника, по всему подшипнику и предотвращает этим развитие высокой температуры внутри подшипника;
  • защищает подшипник от коррозии;
  • препятствует проникновению в подшипник загрязнений из окружающей среды.

Применение

Пластичные смазки многофункциональны, однако можно выделить 5 основных:

  1. Защита от износа — одна из основных функций;
  2. Герметизация подшипников — для того, чтобы не допустить попадания в узел воздуха, газов, жидкостей;
  3. Защита от кавитации — для снижения вибрации и шума в узле трения;
  4. Защита от коррозии — для защиты поверхностей, куда может попасть влага и появиться коррозия;
  5. Защита от ударных нагрузок — там где нельзя обеспечить защиту смазыванием маслом, но необходимо, чтобы на поверхности трения всегда находился смазывающий материал.

К преимуществам можно отнести характеристики:

  • Простота подачи в узел трения.
  • Смазка легко закладывается в узел трения и в течение долгого времени сохраняет свои свойства, оставаясь в нем;
  • Высокая степень адгезии. Смазка, обладая высокой липкостью, прочно держится на поверхностях трения, не стекает, обеспечивая при этом смазку в любой момент времени;
  • Снижение шума и вибрации. Благодаря густой консистенции пластичных смазок, они прекрасно выполняют роль демпфера при ударных воздействиях, возникающих при вибрации.

Недостатки:

  1. Отсутствие охлаждающих свойств. Если у масла одна из функций состоит в охлаждении узла, куда оно подается, то у пластичной смазки такое свойство отсутствует;
  2. Отсутствие моющих свойств. Если узел подвергается загрязнению, или в нем накапливаются продукты износа, то они будут там копиться до тех пор, пока не станут действовать как абразив. Результат — выход узла из строя и его последующая замена;
  3. Ограничение по прокачиваемости. Есть ряд показателей, которые позволяют нормировать смазывающие материалы по степени прокачиваемости. Чем гуще смазочный материал, тем он труднее прокачивается по каналам туда, куда требуется подать смазывающий материал.

Классификация продуктов

Основные виды консистентных смазок классифицируют по типу применяемого в них загустителя.

  • Мыльные. Для их приготовления используют соли карбоновых кислот. В эту группу входят кальциевые, натриевые и комплексные (с включением анионов лития, бария, алюминия и др.) смазки. Продукты на основе кальция (солидолы) являются самыми простыми, но имеют низкий температурный предел эксплуатации. Натриевые составы не обладают водостойкостью, поэтому практически вышли из употребления. Комплексные пластичные смазки термостойки и обладают высокими противозадирными свойствами.
  • Углеводородные. Составы изготавливаются на основе высокоплавких углеводородов. Преимущественно это канатные и консервационные материалы.
  • Неорганические. Для их загущения используют бентонит, силикагель, графит, асбест и другие вещества. Данный вид продуктов обладает высокой термостабильностью.
  • Органические. К ним относятся продукты на основе кристаллических полимеров и производных карбамида.

По области использования пластичные смазки делят:

  • на антифрикционные – самая большая группа, применяемая для снижения износа механизмов в процессе трения. В нее входят следующие виды смазочных материалов: общего назначения (например, консистентная смазка для подшипников, материал для редукторов и зубчатых передач различных механизмов);
  • термостойкие (например, высокотемпературная консистентная смазка для скоростных узлов скольжения и качения, работающих в экстремальных температурных режимах);
  • морозостойкие (материалы, имеющие низкий порог загустения, используемые при очень низких температурах);
  • химически стойкие (например, консистентная смазка, используемая в механизмах, работающих в агрессивных средах);
  • приборные и др.

консервационные – предназначены для предотвращения коррозии деталей оборудования как в процессе эксплуатации, так и во время хранения;

уплотнительные – служат для герметизации соединений и облегчения их монтажа (например, консистентная силиконовая смазка для сальников запорной арматуры и резьбовых соединений);

узкоспециализированные – применяются в определенных отраслях с особыми требованиями к смазкам (пищевая, электротехническая и химическая промышленность, ж/д и авиационный транспорт и др.).

Стоит отметить, что данное разделение смазок весьма условно, так как материалы обладают одновременно несколькими свойствами и могут выполнять различные функции.

Консистентные смазки применение. Основа смазки.

Применение смазки необходимо, чтобы сделать детали “скользкими. Присутствует в этом утверждении доля правды, но имеются, немаловажные причины использования консистентных смазочных материалов. Смазки способны уменьшить трение, снизить степень износа, уменьшить рабочую температуру, свести к минимуму коррозию металлических поверхностей

Что же такое смазка

Чтобы понять, зачем использовать смазку, необходимо разобраться – что это такое. Известно, что трение – это сила сопротивления относительного движения между двумя телами. Если бы трения не существовало, ничто никогда не смогло бы остановиться.

Нам нужны функция трения, но бывают случаи, когда мы хотим уменьшить силу присутствующего трения. Когда вы потираете, руки друг о друга, вы создаете тепло из-за трения между скользящими поверхностями от ваших рук. А теперь представьте, потирая руки 3600 раз в минуту – ваши руки были бы в огне! Нечто похожее происходит и в вашей технике. Таким образом, если бы в оборудовании не использовались смазочные материалы, вряд ли смогли выдерживаться рабочие температуры, нагрузки, скорости. Катастрофического выхода оборудования из строя не возможно было бы избежать. Итак, сокращение трения, снижения теплоотдачи – только некоторые из причин, почему мы используем смазки. Если посмотреть под микроскопом, при перемещении двух поверхностей относительно друг друга, мы бы увидели то, как два горных хребта трутся друг о друга. Когда это происходит, небольшие куски материала превращаются в маленькие абразивные частицы, в результате появления которых подвергаются истиранию, а также обламыванию более крупных осколков. Этот замкнутый круг мы пытаемся разорвать, путем создания масляной пленки.

Типы масляных пленок

Два наиболее распространенных типов пленок смазочного материала – гидродинамическая и эластогидродинамическая. Первые находятся между скользящими поверхностями. Наиболее распространенным примером может служить подшипник скольжения.

Примером же эластогидродинамической пленки могут служить – шарикоподшипники или роликовые подшипники.

Из чего производят смазки?

Все смазочные материалы создаются на базовом масле. Есть три типа: минеральные, синтетические и растительные. Минеральное масло производят из нефти, и качество, напрямую зависит от процесса рафинирования. Существует шкала оценок на нефть и различное оборудование требуют различного качества нефти.

Минеральное масло в основном состоит из четырех различных типов молекул – парафин, разветвленные парафиновые молекулы, нафтеновые и ароматические. Парафиновые масла имеют длинную, прямую структуру, а разветвленные парафиновые масла такие же, но с ответвлением в стороны. Они используются главным образом в моторных маслах, промышленных смазках и технологических маслах.

Например, смазка Fliessfett ZS KOOK-40 — Жидкая консистентная смазка для центральных систем, на минеральной основе, полученная с использованием высококачественных материалов и присадок.

Нафтеновые масла имеют насыщенную кольцевую структуру и являются распространенными в умеренных температурах.

Ароматические масла имеют ненасыщенную циклическую структуру и используются для изготовления уплотнений соединений и клеев.

Синтетические масла имеют одинаковую прямую структуру. Синтетический молекулярный размер и вес являются постоянными в то время, как в минеральных маслах сильно различаются.

Какая основа предпочтительна

И всё же, лучшими качествами обладают именно минеральные масла. Так, во многих случаях, минеральное масло является предпочтительным основанием из-за невысокой стоимости, токсичности, растворимости и образовании опасных отходов.В крайних случаях (высокие температуры, низкие температуры застывания, огнестойкость, термостойкость) высокая прочность на сдвиг, и высокий индекс вязкости синтетической основы бывает как нигде кстати.

Достоинства и недостатки

Качественное определение пластичной смазки можно охарактеризовать ее достоинствами по сравнению с жидкими смазочными материалами. К основным ее преимуществам можно отнести:

  • Повышенный коэффициент смазки увеличивает износостойкость трущихся поверхностей.
  • Лучшие защитные свойства от коррозии.
  • Высокий коэффициент сцепления позволяет смазке надежно удерживаться в вертикальных и наклонных плоскостях.
  • Повышенные свойства герметизации защищают сопряженные узлы от попадания постороннего мусора и влаги.
  • Более высокий рабочий температурный диапазон.
  • Большой срок службы пластичной смазки повышают экономичность ее применения.

Наряду с достоинствами пластичного материала, существует и несколько недостатков его использования:

  • Замедляет охлаждение трущихся поверхностей.
  • Мыльные смазки имеют слабую химическую устойчивость.
  • Способность удерживать посторонние включения существенно увеличивает скорость износа сопряженных узлов.
  • Сложность доставки смазки непосредственно к трущимся поверхностям.

Состав пластичных смазок

Состав пластических смазок обычно выглядит следующим образом:

  • масленая основа;
  • загуститель;
  • присадки.

Масляная основа обычно составляет около 80%, так как даже 10% загустителя может быть достаточно для достижения необходимой консистенции и физических свойств.

Основа В качестве основы применяются синтетические и минеральные масла, которые также используются для производства жидких смазок. Минеральные, то есть нефтяные, масла предварительно подготавливаются. Их очищают с помощью водорода, методом гидроочистки. Это необходимо для снижения сернистости, что позитивно влияет на антиокислительные свойства готового продукта. Такие типы применяются в узлах, которые работают при небольших нагрузках и перепадах рабочих температур.Синтетическую основу применяют в тех случаях, когда необходимо обслуживание высокооборотных узлов. Чаще всего они применяются в скоростных подшипниках и редукторах.
Загуститель. Загуститель составляет до 15% от объема готового продукта. Процесс смешивания основы и загустителя должен выполнятся при определенных условиях, с соблюдением особого температурного режима. Для приготовления используются специальное оборудование, в виде миксеров. После остывания смесь получает свои свойства и структуру, которые не меняются в процессе хранения и эксплуатации.Чаще всего используется мыла жирных кислот, твердые углеводы или неорганические соединения.
Присадки

Присадки занимают наименьшую долю в составе, но их применение очень важно для получения особых технологических свойств. Обычно присадки применяются для:
препятствия окисления самой мазки;
снижения трения во время работы механизмов;
повышения адгезии, чтобы пластичная смазка хорошо удерживалась на рабочей поверхности.

В качестве присадок обычно используются такие материалы как медь, тальк, слюда и графит.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий