Применение
Константановая проволока служит для изготовления проводников между приемником и контактором высокоточных температурных измерителей. Также из нее делают компенсационные провода термопар. Из проволоки и лент создают резистивные, ленточные и проволочные нагревательные элементы промышленных печей по выплавке металлов с небольшой температурой плавления. Наконец, из константана производят реостаты, резисторы, тензометрические датчики.
Во-первых, высокое электрическое сопротивление, способствует быстрому и сильному нагреву. Во-вторых, малый температурный коэффициент сопротивления позволяет значительно упростить конструкцию нагревателя. Так, он избавляет от необходимости понижения напряжения при запуске, следовательно, не требуется трансформатор. В-третьих, хорошие технологические особенности позволяют создавать детали сложной конфигурации.
Таким образом, благодаря названным свойствам константана в совокупности возможно изготовление из него коротких нагревательных элементов большой площади поперечного сечения. Это считают существенным преимуществом по следующим причинам. Во-первых, печи многих типов, например, лабораторные, рассчитаны на короткие нагревательные элементы. Во-вторых, детали большого диаметра характеризуются большим сроком службы.
Константан применяют как для открытых, так и для закрытых нагревателей. В первом случае его используют в виде ленты и толстой проволоки. Это объясняется сгоранием тонкой проволоки на открытом воздухе при высоких температурах (более 400-450 °C). Однако материал в такой форме актуален для печей с инертным газом, вакуумных печей, закрытых нагревателей. В последнем случае в устройствах типа ТЭН, ориентированных на нагрев жидкости, воздуха, полов и т. д., константан не контактирует с окружающей средой. В большинстве таких нагревателей он в виде спирали из нити помещен в герметичную трубку. Для высокомощных моделей применяют толстую проволоку и ленту.
Также относительно формы константана следует отметить, что проволоку считают более предпочтительной по техническим и экономическим особенностям для нагревательного оборудования в сравнении с лентой. Так, для крупных промышленных печей применяют материал диаметром 3-7 мм, для меньших аналогов – 0,03-2,5 мм проволоку. К преимуществам проволоки перед лентой относят меньшую стоимость и простоту изготовления нагревательных элементов. Так, спиральные детали создают путем станковой навивки. К тому же проволочную спираль, благодаря компактности и высокой пластичности, можно разместить в оборудовании различными способами: на сводах и стенках зигзагами и лабиринтом, подвесить на керамических изоляторах, навить на трубчатое основание. Второй способ применяют на низкотемпературных печах, а третий считают наиболее эффективным. Вследствие больших трудоемкости и затратности создания нагревательных элементов из ленты обычно ее применяют в основном в специфических случаях. В любом случае константановые нагревательные элементы близки по параметрам эффективности, независимо от формы.
Ценообразование
Стоимость константана складывается из цены никеля и меди на мировых биржах цветных металлов. За основу большинство российских промышленников принимают значение котировок Лондонской биржы. Сразу отметим, что цена никеля является основополагающей при расчете стоимости сплава.
При сдаче лома цена может варьироваться. На ее значение влияют следующие факторы:
- Наличие следов коррозии на поверхности сплава.
- Объем поставок. Пунктам приёма металлолома выгоднее иметь дело с крупными партиями от 100 кг в силу сокращения времени на реализации лома. Наценка составляет в среднем 10-15% процентов от основной стоимости.
- Цена на проволоку зависит также от ее диаметра. Как правило, чем проволока тоньше, тем она дороже.
Что такое тантал? Исторические факты
Впервые тантал был обнаружен в 1802 году шведским ученым А.Г. Экебергом в составе двух минералов, найденных в Швеции и Финляндии. Оксид этого элемента был очень устойчив, и даже большое количество кислоты не могло разрушить его структуры. У ученого сформировалось впечатление, что металл не может напитаться кислотой. Экеберг вспомнил легенду о царе Тантале, который являлся сыном Зевса и в результате наказания не мог утолить голод и жажду. Его страдания назвали танталовы муки.
Так и ученый, как не старался, не мог выделить чистый металл из окисла, поэтому свою работу сравнивал с танталовыми муками. Химическому элементу он дал название тантал, а минерал, который содержал этот металл, назвал танталитом. Лишь в 1903 году немецкий ученый химик Болтон В. получил в чистом виде пластичный металл тантал. Промышленный выпуск его начался только в 1922 году. Первый образец промышленного изготовления тантала был всего со спичечную головку. США первыми стали производить его, и в 1942 году был запущен завод по выпуску этого металла.
Таблица удельных сопротивлений проводников
Материал проводника | Удельное сопротивление ρ в |
Серебро Медь Золото Латунь Алюминий Натрий Иридий Вольфрам Цинк Молибден Никель Бронза Железо Сталь Олово Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) Титан Ртуть Нихром (сплав никеля, хрома, железа и марганца) Фехраль Висмут Хромаль | 0,015 0,0175 0,023 0,025… 0,108 0,028 0,047 0,0474 0,05 0,054 0,059 0,087 0,095… 0,1 0,1 0,103… 0,137 0,12 0,22 0,42 0,43… 0,51 0,5 0,6 0,94 1,05… 1,4 1,15… 1,35 1,2 1,3… 1,5 |
Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм2. Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.
Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.
Сопротивление проводника можно определить по формуле:
где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм2.
Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм2.
Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм2.
Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.
Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм2. Определить необходимую длину проволоки.
Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.
Пример 5. Проволока сечением 0,5 мм2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.
Материал проводника характеризует его удельное сопротивление.
По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.
Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.
У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.
Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.
температурный коэффициент сопротивления
–
это изменение сопротивления проводника при его нагревании,
приходящееся на 1 Ом первоначального сопротивления и на 1° температуры,
обозначается буквой α.
Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления
Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).
Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).
Таблица 2
§ 17. Ртуть и ее свойства
Ртуть является единственным металлом, который сохраняет жидкое состояние при комнатной температуре. Ртуть стоика к окислению, которое наблюдается только при температуре, близкой к температуре ее кипения (356,9° С). Взаимодействие ртути с другими газами (водородом, азотом, окисью углерода) также незначительно. Разведенные соляная и серная кислоты и щелочи па ртуть не действуют, но она растворяется в соляной., серной и азотной концентрированных кислотах. Медь, цинк, свинец, никель, олово, серебро и золото растворяются в ртути. Ртуть обладает следующими характеристиками: плотность 13, 55 г/см3; температура застывания —39° С; температурный коэффициент объемного расширения 182-10-6 1/°С. Удельное сопротивление q = 0,94+ 0,95 ом-мм2/м; температурный коэффициент сопротивления а = +0,00099 1/°С. Ртуть применяется в качестве жидких контактов в специальных реле и выключателях, а также в ртутных выпрямителях. Следует отметить исключительную вредность ртути (особенно ее паров) для здоровья
Поэтому работа со ртутью требует осторожности. Ртуть нужно хранить в герметически закрытой стеклянной или фарфоровой таре
Очистку ртути (фильтрование и др.) производят в специальные закрытых шкафах с вытяжной вентиляцией.
- Назад
- Вперед
Тепловые потери проводов
Если с помощью кабеля из вышеприведенного примера к однофазной сети 220 В подключить нагрузку 2.2 кВт, то через провод потечёт ток I = P / U или I=2200/220=10 А. Формула для вычисления мощности потерь в проводнике: Pпр=(I^2)*R (2) Пример № 2. Рассчитать активные потери при передаче мощности 2.2 кВт в сети с напряжением 220 В для упомянутого провода. Решение: подставив значения тока и сопротивления проводов в формулу (2), получим Pпр=(10^2)*(2*0.24)=48 Вт. Таким образом, при передаче энергии от сети в нагрузку потери в проводах составят чуть больше 2%. Эта энергия превращается в тепло, выделяемое проводником в окружающую среду. По условию нагрева проводника (по величине тока) производят выбор его сечения, руководствуясь специальными таблицами. Например, для вышеприведенного проводника максимальный ток равен 19 А или 4.1 кВт в сети напряжения 220 В.
Проволока из тантала
Металлопрокат в целом является наиболее обширной формой представления данного материала на рынке. Существенную нишу в сегменте занимает проволока. Она необычна тем, что благодаря скромным размерам может использоваться как нить. Это объясняет ценность тантала для медицинской сферы – изделия такого рода применяются для накладывания швов и повязок. Но это лишь пример, демонстрирующий одно из отличительных качеств такой проволоки. Более крупные форматы применяются в машино-, авиа-, станкостроении и капитальном строительстве. Причем в зависимости от назначения может использоваться мягкий и твердый металл. Тантал, благодаря податливости с точки зрения обработки, позволяет выпускать длинную проволоку от 1500 см при толщине от 0,15 мм и более. На готовых изделиях, как отмечают пользователи, редко встречаются заусенцы, трещины и прочие дефекты. Однако тонкая структура все же накладывает требования на условия хранения и транспортировки – в частности, проволоку не рекомендуется подвергать контактам с влагой и агрессивными средами.
2.1.1. Физическая природа электропроводности металлов
Металлы имеют кристаллическое строение: в узлах кристаллической решетки находятся положительно заряженные ионы, окруженные коллективизированными электронами (электронным газом).
Современные представления об электронном строении металлов, распределении электронов по энергетическим состояниям, их взаимодействии с другими элементарными частицами и кристаллической решеткой дает квантовая теория, основы которой были разработаны советским ученым Я.И.Френкелем и немецким физиком А.Зоммерфельдом.
Читать также: Самый лучший бюджетный шуруповерт
Свободные электроны хаотически перемещаются по кристаллу со средней тепловой скоростью и = 10 5 м/с. В электрическом поле напряженностью Е электроны получают добавочную скорость упорядоченного движения v — скорость дрейфа, благодаря чему и возникает электрический ток. Плотность тока зависит от скорости дрейфа, заряда электрона е и концентрации свободных электронов n .
Скорость дрейфа в реальных условиях существенно меньше скорости теплового движения электронов v u . Так, в медном про-
воднике при плотности тока j = 1 А/мм 2 скорость дрейфа составляет v = 1 . 10 -4 м/с.
За время τ между столкновениями с узлами кристаллической решетки на длине свободного пробега l , электроны, двигаясь с уско-
рением a = e E , приобретают скорость дрейфа: m e
Приравнивая аналитическое выражение закона Ома (1.1) к выражению (2.1) с учетом (2.2), получим формулу для удельной проводимости
Выразим произведение m e . и через концентрацию свободных электронов, используя квантовую статистику, базирующуюся на принципе Паули, согласно которому в каждом энергетическом состоянии может находиться только один электрон, а на каждом энергетическом уровне — не более двух (с антипараллельными спинами). Тогда при температуре абсолютного нуля ( Т = 0 К) половина из общего числа свободных электронов в кристалле ( n /2) займет наиболее низкие энергетические уровни.
В квантовой теории вероятность заполнения электронами энергетических состояний с энергией уровня Э определяется функцией Ферми
где Э F — энергия Ферми, т.е. максимальная энергия, которую может иметь электрон в металле при температуре абсолютного нуля.
Из формулы (2.4) следует, что при Э = Э F , вероятность заполнения электронами уровня Ферми равна 0,5. Энергия Ферми для большинства металлов составляет от 3 до 15 эВ. Уровни, расположенные ниже уровня Ферми ( Э Э F ), с вероятностью >0,5 заполнены электронами, а уровни, лежащие выше уровня Ферми ( Э > Э F ), с такой же вероятностью свободны от электронов.
В соответствии с квантовой статистикой Ферми-Дирака концентрация свободных электронов в металле определяется путем интег-
рирования по всем заполненным энергетическим состояниям, что дает следующее выражение
Выразив из этого соотношения значение энергии Ферми через концентрацию электронов и, учитывая, что Э F = m e и 2 2 , получим
Подставляя m e и в формулу (2.3), найдем выражение для
удельной проводимости металлов
Концентрация свободных электронов в чистых металлах, характер их распределения по энергиям и энергия Ферми с повышением температуры почти не изменяются. Например, при нагреве серебра от 0 до 1000 К энергия Ферми уменьшается лишь на 0,2%. Такие малые изменения в широком температурном диапазоне можно не учитывать. Следовательно, формула (2.6) справедлива при любой температуре. Поэтому электропроводность металла определяется, в основном, средней длиной свободного пробега электронов, которая зависит от электронного строения атомов и типа кристаллической решетки. Длина свободного пробега для некоторых металлов дана в табл. 1.
Длина свободного пробега электронов в некоторых металлах при 0 ° С
Наибольшая длина свободного пробега наблюдается в металлах с гранецентрированной кубической кристаллической решеткой (Ag, Cu, Au), которые и являются лучшими проводниками.
Переходные металлы (Fe, Ni, Co, Cr, Mn, V, Zr, Nb, Mo, W, Hf, Ta, Re, Pt и др.) имеют меньшую электропроводность, что связано с их специфическим электронным строением. В этих элементах внутренние d — или f -оболочки неполностью заполнены электронами. В электрическом поле часть валентных электронов из внешней s — оболочки переходят на свободные уровни внутренних оболочек, что приводит к уменьшению числа свободных электронов, участвующих в проводимости.
Особенности электронного строения переходных металлов являются причиной многих их специфических свойств: тепловых, магнитных, склонности к полиморфизму, переменной валентности и др.
И в заключение, у чистых металлов при нагреве средняя энергия электронов практически остается без изменения, что свидетельствует о малой теплоемкости электронного газа.
Основные характеристики
На такой показатель, как температура плавления латуни в первую очередь влияет её состав. Температура в разных случаях может иметь различные показатели, которые колеблются в диапазоне от восьмисот восьмидесяти градусов по Цельсию до девятисот пятидесяти. Конечно, возможно этот диапазон понизить. Если существует потребность в этом, то следует просто в состав сплава вводить больше цинка. Для обратного эффекта следует делать соответственно наоборот.
Обработка этого металла может осуществляться посредством сварки, но следует помнить, что в таком случае она может прокатываться.
Следует знать тот важный факт, что если не позаботиться о покрытии поверхности этого сплава дополнительной защитой, то впоследствии придётся столкнуться с почернением поверхности. Это связано с тем, что при контакте с воздухом она немного окисляется, вследствие чего и происходит лёгкое почернение.
Поверхность латуни достаточно легко поддаётся полировке. Для того чтобы выбрать способ плавления для этого металла следует, для начала, учесть его состав.
Следует помнить, что на латунный сплав весьма негативно влияют такие элементы, как свинец или висмут. Это связано с тем, что эти элементы значительно снижают свойства материала к деформации в условиях, когда он находится в состоянии нагрева.
Латунь является цветным металлом, но в то же время она обладает множеством особых характеристик, что свойственны только этому материалу. Металл обладает некоторыми преимуществами, которые напрямую влияют на популярность материала:
- Латунь имеет высокую устойчивость к процессам коррозии.
- Материал обладает довольно высокой степенью текучести, что является очень важным фактором при его плавлении.
- Можно отметить и высокие антифрикционные свойства этого металла, а также довольно низкую склонность к ликвации.
В принципе, можно отметить ещё много разных достоинств, которые приписываются латуни, но они не общие, а узконаправленные. Это означает, что в зависимости от марки, материал используется в различных промышленных сферах.
Латунь используется в таких важных областях, как автомобилестроение и машиностроение. Также из этого компонентного металла создают большое количество разнообразных изделий различного назначения.
Для того чтобы можно было осуществлять работу с таким материалом, нужно для начала знать все его физические свойства, что впоследствии окажет непосредственную помощь в обработке латуни в домашних условиях.
Технические особенности латуни
- Температура плавления латуни — 880–950 градусов по Цельсию.
- Удельная теплоёмкость этого металла — 0,377 кДж*кг — 1*К-1 при термическом воздействии в 20 градусов по Цельсию.
- Плотность материала — 8300–8700 кг/метр кубический.
- Удельное электрическое сопротивление (0,07–0,08)*6—10 Ом*м.
Основные характеристики
На такой показатель, как температура плавления латуни в первую очередь влияет её состав. Температура в разных случаях может иметь различные показатели, которые колеблются в диапазоне от восьмисот восьмидесяти градусов по Цельсию до девятисот пятидесяти. Конечно, возможно этот диапазон понизить. Если существует потребность в этом, то следует просто в состав сплава вводить больше цинка. Для обратного эффекта следует делать соответственно наоборот.
Обработка этого металла может осуществляться посредством сварки, но следует помнить, что в таком случае она может прокатываться.
Следует знать тот важный факт, что если не позаботиться о покрытии поверхности этого сплава дополнительной защитой, то впоследствии придётся столкнуться с почернением поверхности. Это связано с тем, что при контакте с воздухом она немного окисляется, вследствие чего и происходит лёгкое почернение.
Поверхность латуни достаточно легко поддаётся полировке. Для того чтобы выбрать способ плавления для этого металла следует, для начала, учесть его состав.
Следует помнить, что на латунный сплав весьма негативно влияют такие элементы, как свинец или висмут. Это связано с тем, что эти элементы значительно снижают свойства материала к деформации в условиях, когда он находится в состоянии нагрева.
Латунь является цветным металлом, но в то же время она обладает множеством особых характеристик, что свойственны только этому материалу. Металл обладает некоторыми преимуществами, которые напрямую влияют на популярность материала:
- Латунь имеет высокую устойчивость к процессам коррозии.
- Материал обладает довольно высокой степенью текучести, что является очень важным фактором при его плавлении.
- Можно отметить и высокие антифрикционные свойства этого металла, а также довольно низкую склонность к ликвации.
В принципе, можно отметить ещё много разных достоинств, которые приписываются латуни, но они не общие, а узконаправленные. Это означает, что в зависимости от марки, материал используется в различных промышленных сферах.
Латунь используется в таких важных областях, как автомобилестроение и машиностроение. Также из этого компонентного металла создают большое количество разнообразных изделий различного назначения.
Для того чтобы можно было осуществлять работу с таким материалом, нужно для начала знать все его физические свойства, что впоследствии окажет непосредственную помощь в обработке латуни в домашних условиях.
Технические особенности латуни
- Температура плавления латуни — 880–950 градусов по Цельсию.
- Удельная теплоёмкость этого металла — 0,377 кДж*кг — 1*К-1 при термическом воздействии в 20 градусов по Цельсию.
- Плотность материала — 8300–8700 кг/метр кубический.
- Удельное электрическое сопротивление (0,07–0,08)*6—10 Ом*м.
Параметры и характерности
Данное наименование носит сплав медно-никелевого состава, отличающийся термостабильностью, электрическим сопротивлением, обрабатываемостью, применяется в электротехнической промышленности.
Последнее гарантирует стабильность сопротивления при разной температуре. Благодаря показателям сопротивления константан называют резистивным сплавом. Более того этот материал отличается существенной термоэлектродвижущей силой. Напоследок, константан обладает хорошим технологичными качествами, обуславливающими обрабатываемость его механическими методами. Так, для него применимы паяние, чеканка, штамповка, ковка и т. д. После отжига возможно применять резание. Засорение цинком значительно осложняет обработку.
Дальше приведены другие характеристики константана. Плотность его равна 8,8–8,9 г/см 3 . Аналогичным образом, это наиболее плотный никелевый сплав, превосходящий по этому параметру сталь. Эта характерность, определяющая большую массу константана, вызвана существенной долей меди в его составе. Температура плавления составляет 1260 °C, из-за чего сплав считается термостабильным, сохраняя до названной температуры внутреннее строение. Твердость равна 155 НВ, прочностный предел на разрыв – 400 МПа. Температурный показатель линейного увеличения составляет 14,4?10 -6 в диапазоне от 20 до 100 °C. Теплоемкость равна 0,0977 кал/г?C, проводимость тепла – 0,05 кал/см?с?C. Магнитные свойства отсутствуют. Константан отличается большими показателями пластичности. Так, модуль упругости составляет 16600 кгс/мм 2 , относительное удлинение может достигать 30%, сужение – 71%. Нужно сказать, что эластичность сильно уменьшается при загрязнении константана цинком. Благодаря высокому пределу выносливости, составляющему для горячетканых прутьев 243 МПа (что отвечает стали 45), константан подойдет для условий переменных нагрузок. Медно-никелевый состав обеспечивает сопротивление сплава коррозии. Так, он не реагирует с кислородом до 800 °C, а еще с органическими кислотами и соляными растворами. Цвет – желтоватый.
Ввиду плохой прочности константан нередко подвергают повторной обработке. После отжига прочностный предел увеличивается до 700-800 МПа, что приравнивает сплав по этому показателю к стали 45. Для еще большего упрочнения рассматриваемого материала используют наклеп, предполагающий поверхностную прокатку стальными роликами, вызывающую пластические деформации. В результате подобной отделки константан приобретает критерии предела прочности в 850 МПа и твердости в 75-90 НВ
Однако необходимо брать во внимание, что как механическая, так и термообработка константана МНМц 40-1,5 уменьшает эластичность: относительное удлинение уменьшается до 4%, сужение – до 21%
Это покрытие сформировывается в результате прокаливания, по этому изделия, ориентированные на применение в электрическом оборудовании, подвергают этой отделке при изготовлении.
Стоимость константана сформировывается, в первую очередь, под воздействием цены Ni. К примеру, стоимость рассматриваемого материала в октябре 2017 г. составляла примерно 5 тыс. рублей за 1 кг. В большинстве случаев она подчиняется от формы и ее свойств. Так, лента чуть дороже если сравнивать с проволокой. А для проволки имеет большое значение толщина: варианты с большим диаметром доступнее. К примеру, на декабрь 2016 г. тонна 0,6 мм проволки стоила около 2,3 млн., а материала диаметром 1,2 мм – 0,8-1 млн. Более того, как видно из приведенных данных, при массовой реализации цена существенно уменьшается. Стоимость покупки также устанавливается определенными моментами
Во-первых, важное имеет значение состояние лома, определяемое, в первую очередь, наличием следов коррозии. Второе, для проволки имеет большое значение диаметр. Тонкие материалы ценятся выше
Тонкие материалы ценятся выше.
Третье, важен размер поставок. Пункты приема лома предпочитают принимать большие партии (более 100 кг) ввиду ускоренной реализации. В данных случаях они наценивают лом на 10–15%.
Что следует учитывать при работе с латунью
Домашний мастер в бытовой обстановке использует довольно много изделий, изготовленных именно на основе латуни. Очень много инструментов изготавливаются именно с использованием латуни, её очень часто можно встретить в различных сплавах, основой которых может быть медь или бронза.
Если быть осведомлённым насчёт того, какая температура плавления приемлема для латуни и её сплавов, впоследствии возможно использовать эти знания при починке или изготовлении различных изделий, которые могут быть использованы в хозяйстве.
Процедура плавления такого универсального компонента не лишена различных тонкостей и нюансов, о которых следует знать и помнить, чтобы избежать различных трудностей при обработке, а также отрицательных последствий в результате ошибочных действий.
Следует помнить, что при всех существующих тонкостях при плавлении латуни, отдельные нюансы следует учитывать при плавлении сплавов из бронзы и меди.
Дело в том, что эти сплавы имеет несколько другие параметры плавления, которые отличаются от характеристик латуни, поэтому прежде, чем начать работу с такими латунными сплавами, нужно для начала подробно узнать все их свойства. Это позволит не допустить досадных ошибок при их обработке, а также провести работу максимально эффективно и плодотворно.
Для того чтобы произвести плавку металла в домашних условиях, следует обладать определёнными знаниями и навыками, а также и специальными инструментами, которые смогут помочь в работе и произвести необходимые действия, предполагающие плавку латуни.
К тому же опытные мастера рекомендуют перед процедурой плавки латуни в домашних условиях запастись терпением, так как процедуру эту быстрой никак назвать не получится.
Для работы необходимо запастись следующими элементами:
- техническое серебро;
- газовая горелка ручного типа;
- специальная графитовая горелка;
- медный сплав.
Нужно перед работой приобрести буру, причём в достаточном количестве. К тому же для того чтобы обеспечить максимальные безопасные условия для окружающего пространства во время плавления металла, следует использовать асбестовый лист.
Процесс плавки латуни является довольно трудоёмким и потребует определённых затрат как времени, так и приложенных сил.
Опять же следует учесть особенности плавления сплавов, содержащих бронзу и медь, так как они имеют немного другие характеристики и свойства, что означает при плавке придётся применять другую температуру термического воздействия.
К процессу плавки латуни следует переходить уже только в том случае, когда рабочее место подготовлено должным образом, а все рабочие инструменты находятся на своём месте и готовы к работе.
Характеристика и свойства металла
Та представляет собой тяжелый сине-серый металлический элемент с температурой плавления 3 017 С. Он обладает отличной коррозионной стойкостью, хорошей пластичностью и устойчив к большинству кислот. В электронике он составляет основу высокопроизводительных конденсаторов, в химическом производстве, где при легировании железом обеспечивает превосходную коррозионную стойкость металлам, используемых в агрессивных средах, таких как нефте- и газопроводы. Свойства тантала в алюминиевых сплавах предотвращают окисление, позволяя безопасно использовать более легкие компоненты. Благодаря высокой температуре плавления его применяют для цементирования карбида вольфрама в станках и в сплавах для лопастей турбины реактивного двигателя.
Химические свойства:
- Атомный номер: 73;
- атомный вес: 180,94788;
- температура плавления: 3290 К (3017 C или 5463 F);
- точка кипения: 5731 К (5458 С или 9856 F);
- плотность: 16,4 грамм /см3;
- фаза при комнатной температуре: твердый;
- классификация элементов: металл;
- номер периода: 6;
- номер группы: 5;
- название группы: нет.
Слиток тантала
Перспективы
Все больше начинают использовать этот умный металл в медицинской промышленности для нужд восстановительной хирургии. Его применяют для изготовления имплантатов. Танталовой пряжей возмещают мускульную ткань, проволока идет для скрепления костей, а нити используют для наложения швов. В связи с крупным перевооружением мировых авиалиний применение тантала для нужд авиастроения продолжит свой рост. Сплавы в авиапромышленности используются для двигателей самолетов. Кроме этого, тантал продолжает активно использоваться для производства вычислительной техники: процессоров, принтеров.
Не уменьшается спрос на этот металл и в химической промышленности. Его широко применяют для производства хлора, пероксида водорода, многих кислот. Химическое машиностроение широко использует его при изготовлении оборудования, контактирующего с агрессивными средами. Самым серьезным потребителем танталовых сплавов остается металлургическая промышленность. Растет спрос на него и в ядерной энергетике, где в основном используют теплопроводность в сочетании с пластичностью и твердостью тантала.