Класс точности

Принцип работы

Принцип действия приборов легче показать на какой-нибудь модели. В основу работы аппарата положено аналогово-цифровое преобразование. Принципы можно рассмотреть на примере универсального В7-35.

Преобразователи, которые установлены в приборе, измеряют силу тока, напряжение постоянного и переменного электрического тока, сопротивление и конвертируют все это в нормализованное напряжение или цифровой код, если в устройстве имеется аналого-цифровой преобразователь.

Схема прибора основана на нескольких преобразователях:

  • Преобразователь масштабирования;
  • Низкочастотный аппарат, преобразующий напряжение переменного тока в постоянный;
  • Аналогичный преобразователь постоянного и переменного электрического тока в напряжение;
  • Конвертер сопротивления в напряжение.

Схема вольтметра В7-35

Получая эти параметры, устройство конвертирует их в напряжение, отображаемое по специальной шкале или в электроном виде, если в нем предусмотрено наличие АЦП.

Принцип работы электромагнитного аналогового вольтметра следующий. Создание вращающего момента происходит с помощью силового действия магнитного поля катушки на подвижном постоянном магните, который выполняется в форме плоской лопасти.

Под действием магнитного поля, которое создается током, магнит втягивается в цель катушки и поворачивается на ось, содержащую указательную стрелку.

Схематическое изображение работы стрелочного устройства

Применения вольтметра

Приложения вольтметра включают в себя:

  • Это очень полезно для определения напряжения устройства накопления заряда, например, для проверки напряжения батареи. Например, новая ячейка ААА будет иметь около 1,6 В. Свинцово-кислотный автомобильный аккумулятор 12 В будет показывать 12,5 В при полной зарядке или 14 В при зарядке от генератора в автомобиле. Если он показывает 10 В, значит, с генератором что-то не так.
  • Его можно использовать просто для того, чтобы узнать, есть ли в цепи питание или нет, например, в сетевой розетке.
  • Убедитесь, что питание включено или выключено на приборах.
  • Мы можем рассчитать ток путем измерения напряжения на известном сопротивлении. Это полезно, когда у вас нет амперметра.
  • Они используются для построения проверки непрерывности с последовательным аккумулятором.
  • Они используются для построения омметра с помощью делителя напряжения с неизвестным резистором.
  • Они используются для построения амперметра путем измерения напряжения на шунтирующем резисторе.

ТОЧНОСТЬ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Качество измерительного прибора характеризуется его точностью, которая оценивается погрешностью измерения.

Из рассмотрения вышеизложенного вытекает, что безукоризненно точное измерение электрических величин технически невозможно, т.е. истинное значение измеряемой величины не может быть установлено с помощью измерительного прибора. Поэтому за истинное значение принимают действительное значение измеряемой величины.

Разность между значением величины, измеренной с помощью рабочего прибора а

,, и истинным ее значениема называегся абсолютной погрешностью измерения:

Чем меньше абсолютная погрешность в сравнении с измеряемой величиной, тем выше качество измерения. Для характеристики качества измерения вводится относительная погрешность измерения:

Так как величины аи ах

мало отличаются друг от друга, то часто вместоа подставляют величинуа„ полученную непосредственно из опыта. На значение абсолютной погрешности измерения влияют главным образом погрешность отсчета показаний, несовершенство методов измерения и погрешность самих приборов.

Погрешности электроизмерительных приборов подразделяются на основные и дополнительные. Основные погрешности характеризуют качество самого прибора, дополнительные погрешности обусловлены отклонением условий эксплуатации от нормальных. Отношение наибольшего значения основной абсолютной погрешности к верхнему пределу измерения прибора определяет качество самого прибора. Это отношение называется приведенной погрешностью. Приведенную погрешность обычно выражают в процентах, и по значению приведенной погрешности все приборы подразделяются на 8 классов точности: 0.05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4,0. Приборы, имеющие приведенную погрешность более 4%, считаются внеклассными (это щитовые и учебные приборы). Однако класс точности прибора не определяет точность самого измерения. Для доказательства этого положения в случае, когда абсолютная погрешность не зависит от а

, умножим и разделим выражение относительной погрешности на верхний предел измерения ам:

Электростатические КИП

Эти приборы работают на принципе взаимодействия заряженных электродов, которые разделены диэлектриком. Конструктивно они выглядят практически как плоский конденсатор. При этом, при перемещении подвижной части емкость системы также изменяется.

Наиболее известные из них – это устройства с линейным и поверхностным механизмом. У них немного разный принцип действия. У приборов с поверхностным механизмом емкость изменяется за счет колебаний активной площади электродов

В другом случае важно расстояние между ними

К достоинствам таких устройств относятся небольшая мощность потребления, класс точности ГОСТ, достаточно широкий частотный диапазон и т.д.

Недостатками являются небольшая чувствительность прибора, необходимость экранирования и пробой между электродами.

Что такое амперметр и какие величины он измеряет

Амперметр — измерительный прибор, который служит для измерения силы тока в электроцепях. Единицей по системе СИ является ампер . Электрические цепи могут проводить ток разной силы, поэтому градуируют приборную шкалу амперметра с различной градацией от микроампера равного 1 мкА = 1×0-6 ампер до килоампера равного: 1 кА = 1 000 ампер.

Поскольку ток в цепи напрямую зависит от величины сопротивления элементов электроцепи, то собственное сопротивление прибора должно быть предельно низким, стремится к нулю. Это приведет к уменьшению влияния устройства в процессе замеров тока в цепи, тем самым будет повышена точность измерения.

Какие классы точности бывают, как обозначаются

Как мы уже успели выяснить, интервал погрешности определяется классом точности. Данная величина рассчитывается, устанавливается ГОСТом и техническими условиями. В зависимости от заданной погрешность, бывает: абсолютная, приведенная, относительная, см. таблицу ниже

Согласно ГОСТ 8.401-80 в системе СИ классы точности обычно помечается латинской буквой, часто с добавлением индекса, отмеченного цифрой. Чем меньше погрешность, соответственно, меньше цифра и буквенное значение выше по алфавиту, тем более высокая точность.

Приборы, способные выполнять множество различных замеров, могут быть одновременно более двух классов.

Класс точности обозначается на корпусе устройства в виде числа обведенного в кружок, обозначает диапазон погрешностей измерений в процентах. Например, цифра ② означает относительную погрешность ±2%. Если рядом со знаком присутствует значок в виде галочки, это значит, что длина шкалы используется в качестве вспомогательного определения погрешности.

  • 0,1, 0,2 – считается самым высоким классом
  • 0,5, 1 – чаще применяется для устройств средней ценовой категории, например, бытовых
  • 1,5, 2,5 – используется для приборов измерения с низкой точностью или индикаторов, аналоговых датчиков

Примечание. На корпусе высокоточных измерителей, класс может не наносится. Обозначение таких устройств как правило выполняется особыми знаками.

Классы точности.

Точность изготовления характеризуется величиной допускаемых отклонений от заданных размеров и формы. Для разных машин требуются детали с различной точностью обработки. Очевидно, что детали плуга, дорожного катка и других сельскохозяйственных и дорожных машин могут быть изготовлены менее точно, чем детали фрезерного станка, а детали фрезерного станка требуют меньшей точности, чем детали измерительного прибора. В связи с этим в машиностроении детали разных машин изготовляют по разным классам точности. В СССР (были) приняты десять классов точности.

  • пять из них: 1-й, 2-й, 2а, 3-й, За — требуют наибольшей точности обработки;
  • два других: 4-й и 5-й — меньшей;
  • три остальных: 7-й, 8-й, 9-й — еще меньшей.

Применение классов точности в различных областях

  • 1-й класс точности применяют при изготовлении особо точных изделий. Вследствие очень малых допусков работа по 1-му классу точности требует высокой квалификации рабочего и точного оборудования, приспособлений и инструмента.
  • 2-й и 2а классы точности применяют наиболее часто. По ним изготовляют ответственные детали станков, автомобильных, тракторных, авиационных и электрических двигателей, текстильных и других машин.Наряду с этим в отраслях машиностроения, выпускающих указанные машины, детали менее ответственных соединений из­готовляют по 3-му, 4-му, 5-му и другим более грубым классам точности.
  • 3-й и За классы точности применяют главным образом в тяжелом машиностроении при производстве турбин, паровых машин, двигателей внутреннего сгорания, трансмиссионных деталей и т. д.
  • По 4-му классу точности изготовляют детали сельскохозяйственных машин, паровозов, железнодорожных вагонов и т. д.
  • 5-й класс точности применяют в машиностроении для неответственных деталей менее точных механизмов.
  • 7-й, 8-й и 9-й классы точности применяют при изготовлении более грубых деталей и особенно при заготовительных операциях: литье, штамповке, медницко-слесарных работах и т. д.
  • Свободные размеры деталей выполняют обычно по 5-му или 7-му классам точности.

Чтобы показать, с какой посадкой и по какому классу точности нужно изготовить деталь, в чертежах на номинальных сопрягаемых размерах ставится буква, обозначающая посадку, и цифра, соответствующая классу точности. Например, С4 означает: скользящая посадка 4-го класса точности; Х3 — ходовая посадка 3-го класса точности и т. п. Для посадок 2-го класса точности (особенно широко распространенных) цифра 2 не ставится. Поэтому, если в чертеже на сопрягаемом размере рядом с буквой посадки нет цифры, то это значит, что деталь надо изготовить по 2-му классу точности. Например, Л означает легкоходовая посадка 2-го класса точности.

Какой класс точности должен быть у электросчетчика

Правильный выбор электрического счетчика для квартиры или частного домовладения является достаточно сложной задачей и предполагает учёт очень многих факторов, включая также класс точности.

При замене старого электрического счетчика, который устанавливается в квартиру, частный дом или гараж, очень важно ориентироваться не только на показатели мощности, но и класс точности, который обратно пропорционален указываемому производителем цифровому значению. Таким образом, нужно помнить, что чем меньше цифра обозначения на лицевой панели, тем выше уровень класса

Для квартиры

От показателей класса точности прибора учёта напрямую будут зависеть все колебания таких параметров, как процентное отклонение от настоящего количества всего потребляемого объёма электрической энергии.

Бытовое применение такого прибора в квартирных условиях предполагает приемлемый средний уровень класса точности в пределах двух процентов.

Например, реальное потребление электроэнергии в 100кВт предполагает наличие показателей на уровне от 98кВт до 102кВт. Чем меньшая цифра, указываемая с сопроводительной технической документации, обозначает класс точности, тем меньше будет погрешность. Следует отметить, что вариант электрических счётчиков с максимальной точностью отображения погрешностей, как правило, выше по стоимости, чем другие модели.

С целью правильного определения основных показателей квартирного счётчика при выборе модели очень важно получить разъяснения у специалистов организации, занимающейся энергетическим снабжением данного жилого помещения. Чаще всего, все нюансы обязательно прописываются в договоре, который заключается при поставке электрической энергии между организацией и потребителем. Важно помнить, что в соответствии с Российским законодательством, в договорах, заключаемых между потребителями и сбытовой организацией, обозначается только нижний уровень класса точности

В выборе верхних показателей, потребители электроэнергии на законодательном уровне не ограничиваются

Важно помнить, что в соответствии с Российским законодательством, в договорах, заключаемых между потребителями и сбытовой организацией, обозначается только нижний уровень класса точности. В выборе верхних показателей, потребители электроэнергии на законодательном уровне не ограничиваются. В любых жилых многоквартирных домах в обязательном порядке устанавливаются вводные общедомовые приборы учёта электроэнергии с классом точности единица или выше

В любых жилых многоквартирных домах в обязательном порядке устанавливаются вводные общедомовые приборы учёта электроэнергии с классом точности единица или выше.

Все общедомовые электрические счетчики с классом 2.0 подлежат замене при выходе из строя или в процессе выполнения очередной плановой поверки.

Для частного дома

Прежде чем приступить к самостоятельному выбору определенной модели прибора учёта расходуемого электричества, требуется уточнить основные технические характеристики устройства, а также выяснить все условия энергоснабжения частного домовладения.

При отсутствии необходимых данных в сопроводительной документации, целесообразно привлечь специалистов, которые помогут уточнить тип напряжения, а также учтут количество подключаемых бытовых приборов и энергозависимой техники.

Желательно заблаговременно позаботится о составлении грамотной схемы электрической проводки в частном доме.

Для бытового потребления используются электросчетчики, обладающие точностью измерений в 2.5% или более. Именно такие пределы установлены для приборов учёта индукционного или электромеханического типа. Для наиболее точных электронных и цифровых моделей характерным является измерение потребляемой электрической энергии с уровнем погрешности – 1.0 или 1.5. Бытовые модели счетчиков, имеющие более высокие показатели класса точности, в настоящее время не производятся.

Для установки в условиях частного дома, безусловно, наилучшим вариантом являются приборы, обладающие классом точности на уровне 2.0% и имеющие функцию подсчёта электроэнергии в зависимости от ночного и дневного режима.

Классы точности болтов

Болты и другие крепежные изделия изготавливают нескольких классов:

Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.

Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.

Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.

Гайки шестигранные класса точности В

Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.

Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство

Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

В соответствии с ГОСТ 8.401-80 все средства измерений делятся на классы точности, которые устанавливают в стандартах или технических условиях, содержащих технические требования к СИ, подразделяемым по точности. Классы точности СИ конкретного типа выбирают соответственно из ряда классов точности, регламентированных в стандартах или других НД на СИ рассматриваемого вида. В данных стандартах устанавливают конкретные требования к метрологическим характеристи­кам, отражающим уровень точности СИ этого класса.

Классы точности присваивают средствам измерений при их разработке с учетом результатов государственных приемочных испытаний. Как было указано выше, пределы основной и дополнительной погрешностей следует выражать в форме абсолютных, относительных или приведенных погрешностей в зависимости от характера измерения погрешностей в пределах диапазона измерений конкретного вида СИ.

Пределы допускаемой основной погрешности, выражаемые абсолютной систематической погрешностью, наиболее часто используются для характеристики погрешностей, возникающих по вине схем СИ. Однако их значение можно уменьшить за счет регулировки определенных элементов схем, вариации параметров влияния которых заметно сказывается на так называемых аддитивных и мультипликативных погрешностях.

Обозначение классов точности СИ в документации может осуществляться в форме абсолютных по­грешностей или относительных погрешностей (таблица 4.1).

При этом классы точности следует обозначать в документации прописными буквами латинского алфавита или римскими цифрами. В необходимых случаях к обозначению класса точности буквами латинского алфавита допускается добавлять индексы в виде арабской цифры. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, должны соответствовать буквы, находящиеся ближе к началу алфавита, или цифры, означающие меньшие числа.

В эксплуатационной документации на СИ конкретного вида, содержащей обозначение класса точности, должна быть ссылка на стандарт или технические условия, в которых установлен класс точности данного СИ.

Стандарт ГОСТ 8.401—80 предусматривает определенные обозначения классов точности на СИ. В соответствии с указанным стандартом условные обозначения классов точности наносятся на циферблаты, щитки и корпуса СИ. Они включают числа, прописные буквы латинского алфавита или римские цифры. За исключением технически обоснованных случаев, вместе с условным обозначением класса точности на циферблат, щиток или корпус СИ должны быть нанесены обозначения стандартов или ТУ, устанавливающих технические требования к этим СИ.

На СИ одного и того же класса точности, которые эксплуатируются в различных условиях, следует наносить обозначение условий их эксплуатации, предусмотренные в стандартах или ТУ на СИ.

Правила построения и примеры обозначения классов точности приведены в таблице 4.1.

Таблица 4.1. Формулы вычисления погрешностей и обозначение классов точности СИ

ОБОЗНАЧЕНИЕ КЛАССОВ ТОЧНОСТИ

3.1. Обозначение классов точности средств измерений в документации

3.1.1. Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме абсолютных погрешностей (п. ) или относительных погрешностей, причем последние установлены в виде графика, таблицы или формулы, не приведенной в п. , классы точности следует обозначать в документации прописными буквами латинского алфавита или римскими цифрами.

В необходимых случаях к обозначению класса точности буквами латинского алфавита допускается добавлять индексы в виде арабской цифры. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, должны соответствовать буквы, находящиеся ближе к началу алфавита, или цифры, означающие меньшие числа.

3.1.2. Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме приведенной погрешности или относительной погрешности в соответствии с формулой (), классы точности в документации следует обозначать числами, которые равны этим пределам, выраженным в процентах.

Примечание. Обозначение класса точности в соответствии с этим пунктом дает непосредственное указание на предел допускаемой основной погрешности.

3.1.3. Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме относительных погрешностей в соответствии с формулой (), классы точности в документации следует обозначать числами с и d, разделяя их косой чертой (см. таблицу).

3.1.4. Для средств измерений, определяющей характеристикой классов точности которых является нестабильность, обозначения классов точности в документации следует устанавливать по аналогии с пп. и (см. приложение , п. ).

3.1.5. В документации на средства измерений допускается обозначать классы точности в соответствии с п. .

3.1.6. В эксплуатационной документации на средство измерений конкретного вида, содержащей обозначение класса точности, должна быть ссылка на стандарт или технические условия, в которых установлен класс точности этого средства измерений.

3.2.1. На циферблаты, щитки и корпуса средств измерений должны быть нанесены условные обозначения классов точности, включающие числа, прописные буквы латинского алфавита или римские цифры, установленные в пп. – с добавлением знаков, указанных в таблице.

3.2.2. При указании классов точности на измерительных приборах с существенно неравномерной шкалой допускается для информации дополнительно указывать пределы допускаемой основной относительной погрешности для части шкалы, лежащей в пределах, отмеченных специальными знаками (например, точками или треугольниками). К значению предела допускаемой относительной погрешности в этом случае добавляют знак процента и помещают в кружок, например . Этот знак не является обозначением класса точности.

3.2.3. Обозначение класса точности допускается не наносить на высокоточные меры, а также на средства измерений, для которых действующими стандартами установлены особые внешние признаки, зависящие от класса точности, например параллелепипедная и шестигранная форма гирь общего назначения.

3.2.4. За исключением технически обоснованных случаев вместе с условным обозначением класса точности на циферблат, щиток или корпус средств измерений должно быть нанесено обозначение стандарта или технических условий, устанавливающих технические требования к этим средствам измерений.

3.2.5. На средства измерений, для одного и того же класса точности которых в зависимости от условий эксплуатации установлены различные рабочие области влияющих величин, следует наносить обозначения условий их эксплуатации, предусмотренные в стандартах или технических условиях на эти средства измерений.

3.2.6. Правила построения и примеры обозначения классов точности в документации и на средствах измерений приведены в таблице.

Форма выражения погрешности

Предел допускаемой основной погрешности

Предел допускаемой основной погрешности, %

Обозначение класса точности

в документации

на средстве измерений

Приведенная по п.

По формуле (): если нормирующее значение выражено в единицах величины на входе (выходе) средств измерений (пп. – );

γ = ±1,5

Класс точности 1,5

1,5

если нормирующее значение принято равным длине шкалы или ее части (п. )

γ = ±0,5

Класс точности 0,5

Относительная по п.

По формуле ()

δ = ±0,5

Класс точности 0,5

По формуле ()

Класс точности 0,02/0,01

0,02/0,01

Абсолютная по п.

По формуле () или ()

Класс точности М

М

Относительная по пп. и

Класс точности С

С

Технические характеристики

Согласно документации, на схемах сети вольтметры принято обозначение окружностью с вписанной латинской буквой «V». На русских смехах он может заменяться на русскую букву «В». Более того, первая цифра после буквы в маркировке отображает тип устройства и специфику его использования. Например, В2 — вольтметр для постоянного тока, В3 — для переменного, В4 — для импульсного и т.д.

Вам это будет интересно Разновидности бытовых и промышленных электрических выключателей


Аппарат В3-38 для использования в сетях переменного тока

Оценка характеристик прибора включает в себя следующие компоненты:

  • Диапазон измерений. Он ограничивается наименьшим и наибольшим показателем, который способен изменить аппарат. Современные устройства обладают диапазоном от милливольт до киловольт. Промышленные аналоги же способны измерять как меньшие, так и большие напряжения;
  • Точность измерений. Далеко не каждый домашний тестер отличается повышенной точностью измерений. Как уже было сказано, это зависит от его внутреннего сопротивления. Новые вольтметры при сравнительно небольших размерах обладают маленькими погрешностями измерений;
  • Диапазон частот. Показывает чувствительность прибора к тем или иным сигналам с разными частотами, регистрируемых в сети;
  • Температура и другие факторы. Эти параметры определяют показатели, при которых аппарат обладает минимальной погрешностью измерений, доступной для него;
  • Собственно само внутреннее сопротивление (импеданс). Чем выше этот параметр, тем вольтметр более точен.


Цифровые устройства практически полностью вытеснили аналоговые

Важно! Технические характеристики аналоговых приборов сильно зависят от чувствительности магнитоэлектрического прибора. Чем меньше его ток полного отклонения, тем более высокосопротивительные резисторы можно использовать

3.4. Расчет погрешности измерительной системы

Измерительная система предназначена для восприятия, переработки и хранения измерительной информации в общем случае разнородных физических величин по различным измерительным каналам (ИК). Поэтому расчет погрешности измерительной системы сводится к оценке погрешностей ее отдельных ИК.

Результирующая относительная погрешность ИК составит

,

где х — текущее значение измеряемой величины; предел данного диапазона измерения канала, при котором относительная погрешность минимальна; — относительные погрешности, вычисленные соответственно в начале и конце диапазона.

Поскольку ИК есть цепь различных воспринимающих, преобразовательных и регистрирующих звеньев, то для определения , (х) необходимо, прежде всего, оценить СКО погрешностей этих m звеньев . Тогда результирующая СКО погрешности ИК будет

,

где — дополнительные погрешности отn влияющих факторов; ;— границы допускаемой основной погрешности;— квантильный коэффициент, определяемый законом распределения и доверительной вероятностью нахождения погрешности в заданном интервале.

Пример 3.2. Определить погрешность канала измерения мощности, структурная схема которого приведена на рис. 3.10. Здесь ТТ и ТН — соответственно трансформаторы тока и напряжения; — преобразователи соответственно мощности и тока; К — коммутатор; АЦП — аналого-цифровой преобразователь. Исходные данные: относительная погрешностьТТ, приведенная к началу диапазона измерения, составляет , а к концу —; относительная погрешность ТН; СКО погрешность преобразования мощности состоит из пяти составляю­щих: основной погрешности (1%); погрешности от пульсации (0,2%); дополнительной погрешности от измененияcos φ (0,15%); погрешности от колебания напряжения питания (0,1%) и от колебаний температуры окружающей среды (0,6%); cos φ= 0,85; и от изменения температуры окружающей среды; погрешность коммутатора на 128 каналов состоит из трех составляющих: погрешности падения напряжения открытого ключа (0,4%), от утечки тока в каждом из 127 закрытых ключом каналов (0,13%) и пульсации несущей частоты (0,06%);,

Рис. 3.10 Канал для измерения мощности

Решение. 1. Учитывая, что закон распределения погрешности неизвестен, примем его равномерным (k=1,73), и по формуле (3.11) находим и.

Для трансформатора напряжения . Принимая предыдущие условия,.

Для преобразователя мощности .

Тогда .

Здесь не учтена погрешность от колебаний окружающей температуры, так как эта погрешность жестко коррелирована (ρ=1) с погрешностью преобразователядля которого она составляет. В этом случае СКО погрешностей складываются алгебраическии учитываются уже в суммарной погрешности этих преобразователей.

Поскольку не имеет других погрешностей, тообщая погрешность преобразователей составит

4. Для коммутатора, приняв условия п. 1,

.

При этом .

5. Относительные погрешности АЦП заданы. Полагая закон их распределения равномерным, получим

6. Окончательно СКО ИК для конца диапазона составит

,

7. Приняв квантильный коэффициент k=1,95 для доверительной вероятности Р=0,95, окончательно для начала и конца диапазона измерений ИК получим

Тогда с учетом округлений по ряду (3.4)

Это расчетное значение погрешности следует умножить на коэффициент запаса, учитывающий старение элементов ИК. Обычно для рассмотренных звеньев ИК скорость старения не превышает 0,1% в год.

Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.

Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.

Тест цифровых мультиметров

Чтобы определить лучшие приборы нужно проводить определенные тесты, на основании которых делается выбор в пользу той или иной модели. Сегодня рынок располагает огромным количеством моделей. Опытные люди проверили их и определили их преимущества и недостатки, составив описания.

Universal M830B IEK

Обычный и качественный прибор для любителей. Подходит не только для использования дома, но и при монтажных работах. Модель проста в использовании и подходит для новичков. Корпус имеет три входа для щупов, позволяющих измерять постоянный и переменный ток, сопротивление, напряжение. В этой бюджетной модели есть даже функция прозвонки для транзисторов. Для проверки коротких замыканий прозвонки нет.

Модель M830B IEK

UNI-T UT33D

Идеально подходит для домашнего использования и обладает широким спектром измерения электрических параметров. Базовый функционал держится на уровне предыдущего тестера, но дополняется прозвонкой на обрывы цепей. Используется дл ремонта ПК, микросхем, электромонтажных работ. Недостатком стала невозможность изменять переменный ток.

Модель UNI-T UT33D

СЕМ DT-105 480151

Профессиональный измеритель, который обладает очень компактным и легким. Для него, как ни для кого характерно сочетание «цена-качество». Несмотря на большую сложность, чем аналоги, прибор может спокойно использоваться в быту и в других домашних целях. Функционал включает в себя прозвонку, индикатор заряда аккумулятора, индикаторы полярности и многое другое.

Модель СЕМ DT-105 480151

Таким образом, вольтметр — это прибор для измерения напряжения и один из самых простых измерительных инструментов, но даже с ним некоторые не могут справиться. Этот материал максимально широко рассказал, что такое вольтметр, долгую историю его создания и инструкцию по использованию во многих полезных целях.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий