Как расплавить медь в домашних условиях

Стадии пирометаллургического производства меди


Общие способы получения метала из руды

Промышленное получение меди с использованием пирометаллургического способа имеет преимущества перед другими методами:

  • технология обеспечивает высокую производительность – с ее помощью можно получать метал из породы, в которой содержание меди даже ниже 0,5%;
  • позволяет эффективно перерабатывать вторичное сырье;
  • достигнута высокая степень механизации и автоматизации всех этапов;
  • при его использовании значительно сокращаются выбросы вредных веществ в атмосферу;
  • метод экономичный и эффективный.

Обогащение


Схема обогащения руды

На первом этапе производства необходимо подготовить руду, которую доставляют на обогатительные комбинаты прямо с карьера или шахты. Часто встречаются большие куски породы, которые предварительно нужно измельчить.

Происходит это в огромных дробильных агрегатах. После дробления получается однородная масса, с фракцией до 150 мм. Технология предварительного обогащения:

  • в большую емкость засыпается сырье и заливается водой;
  • затем добавляется кислород под давлением, чтобы образовалась пена;
  • частицы металла прилипают к пузырькам и поднимаются наверх, а пустая порода оседает на дне;
  • далее, медный концентрат отправляется на обжиг.

Обжиг

Этот этап направлен на то, чтобы максимально снизить содержание серы. Рудную массу помещают в печь, где устанавливается температура 700–800оС. В результате термического воздействия содержание серы сокращается в два раза. Сера окисляется и испаряется, а часть примесей (железа и других металлов) переходит в легкошлакуемое состояние, которое облегчит в дальнейшем плавку.


Обжиг руды для снижения уровня серы

Этот этап можно опустить, если порода богатая и содержит после обогащения 25–35% меди, его используют только для бедных руд.

Плавка на штейн

Технология плавки на штейн позволяет получить черновую медь, которая различается по маркам: от МЧ1 – самая чистая до МЧ6 (содержит до 96% чистого металла). В ходе процесса плавки, сырье погружается в специальную печь, в которой температура поднимается до 1450оС.


Технология переработки медной руды и получение черной меди

После расплавления массы она продувается сжатым кислородом в конвертерах. Они имеют горизонтальный вид, а дутье осуществляется через боковое отверстие. В результате продува сульфиды железа и серы окисляются и переводятся в шлак. Тепло в конвертере образуется за счет протекания раскаленной массы, он дополнительно не нагревается. Температура при этом составляет 1300оС.


Общая схема выплавки меди

На выходе из конвертера получают черновой состав, который содержит до 0,04% железа и 0,1% серы, а также до 0,5% прочих металлов:

  • олова;
  • сурьмы;
  • золота;
  • никеля;
  • серебра.

Такой черновой металл отливается в слитки массой до 1200 кг. Это так называемая анодная медь. Многие производители останавливаются на этом этапе, реализуют такие слитки. Но поскольку часто производство меди сопровождается добычей драгоценных металлов, которые содержатся в руде, то на обогатительных комбинатах используется технология рафинирования чернового сплава. При этом выделяются и сохраняются прочие металлы.

Рафинирование с использованием катодной меди

Технология получения рафинированной меди довольно простая. Ее принцип используют даже для чистки медных монет от окислов в домашних условиях. Схема производства выглядит следующим образом:


Слитки рафинированной меди

  • черновой слиток помещается в ванну с электролитом;
  • в качестве электролита используется раствор со следующим содержанием: сульфат меди – до 200 г/л;
  • серная кислота – 135–200 г/л;
  • коллоидные добавки (тиомочевина, столярный клей)– до 60 г/л;
  • вода.

температура электролита должна быть до 55оС;
помещаются в ванну пластины катодной меди – тонкие листы чистого металла;
подключается электричество. В это время происходит электрохимическое растворение металла. Частицы меди концентрируются на катодной пластине, а прочие включения оседают на дне и называются шлам.

Весь процесс электролиза протекает в течение 20–28 суток. За этот период вынимают катодную медь до 3–4 раз. Вес пластин получается до 150 кг.

Как это делается: добыча меди

В процессе рафинирования, на катодной меди могут образовываться дендриты – наросты, которые сокращают расстояние до анода. В результате чего снижается скорость и эффективность реакции. Поэтому, при возникновении дендритов, их незамедлительно удаляют.

Физические свойства


Обладает редким цветом – золотисто-розовым, что весьма необычно для металлов. Сравнительно легко вступает в реакцию, а также соединяется с другими металлами, значительно изменяя их свойства. Демонстрацией этого является процесс горения – достаточно смешать чистый металл с серой и нагреть смесь.

Востребованным ее делает прекрасная электропроводность – лучшими показателями обладает только серебро.

Кроме того, она может похвастать хорошей теплопроводностью, что делает незаменимым материалом при производстве тепловых трубок и радиаторов охлаждения. Температура кипения меди довольно велика – 2567 градусов по Цельсию.

Плавка металла в домашних условиях или промышленных проходит одинаково. Температура повышается постепенно и постоянно. Однако при получении достаточного количества тепла кристаллическая решетка разрушается. В этот момент температура прекращает подниматься, несмотря на то, что нагрев не прекращается. Температура плавления меди, как говорилось выше, составляет 1085 градусов по Цельсию.

Только после того, как металл полностью расплавится, будет продолжаться повышение температуры. Кипит он при 2567 градусов по Цельсию.

При охлаждении кристаллическая решетка восстанавливается и металл затвердевает. Температура кристаллизации – 1085 градусов, а при понижении она становится еще более плотной.

Сплавы могут иметь сильно отличную температуру плавления. Например, температура плавления алюминия и меди – 1040 градусов по Цельсию.

Температура плавления меди

При нормальных условиях температура плавления меди составляет 1083 градусов по шкале Цельсия. А во время нагрева происходит ряд превращений на молекулярном уровне, что приводит к изменению свойств вещества. Чтобы разобраться во всех этих изменениях, нужно рассмотреть основные этапы нагрева и расплавления медного слитка. Примерный график плавления меди выглядит так:

  1. В нормальном состоянии при температуре от 0 до 100 градусов внутри меди образуется прочная кристаллическая решетка, которая обеспечивает материалу большую устойчивость, упругость, химическую инертность. Решетка является достаточно прочной, однако в случае сильной деформации может происходить пространственное изменение положения атомов в решетке. Этим объясняется ковкость и пластичность медных изделий, которые могут сгибаться и деформироваться (скажем, при кузнечной обработке или в случае пресса).
  2. В нормальном состоянии при температуре от 0 до 100 градусов на поверхности медного изделия также образуется тонкая оксидная пленка. Наличие такой пленки является большим плюсом для изделия, поскольку она выполняет множество важных функций — минимизирует контакт с внешними веществами, защищает материал от коррозии, немного увеличивает прочность. В случае охлаждения материала ниже температуры 0 градусов сама медь сохраняет все свои физические свойства. Однако оксидная пленка при охлаждении становится менее упругой и плотной, изделие становится менее твердым (хотя с практической точки зрения это снижение прочности практически незаметно).
  3. При нагреве материала выше температуры 100 градусов происходит постепенная деструкция оксидной пленки на поверхности металла. Это повышает химическую активность материала, что делает его восприимчивым к воздействию веществ во внешней среде. Одновременно с этим при нагреве происходит насыщение энергией атомов меди, что делает материал более пластичным. По этой причине ковку медных изделий выполняют именно после нагрева, поскольку без нагрева для изменения формы изделия понадобится большое количество физических усилий (это может быть мускульная сила кузнеца, расходы электроэнергии для запуска электрического пресса и так далее).
  4. При достижении температуры 1083 градусов кристаллическая медная решетка начинается постепенно разрушаться, что превращает твердую медь в жидкую. На физическом уровне происходит следующее — из-за избытка энергии атомы начинают двигаться в кристаллической решетке более интенсивно и хаотично, что приводит к частому столкновению атомов между собой. В конечном счете это разрушает решетку, хотя за счет взаимного столкновения и притяжения атомы не разлетаются в разные стороны. На физическом уровне такая структура материала соответствует жидкости (то есть такому состоянию вещества, при котором атомы находятся в относительно свободном движении, но не разлетаются в разные стороны подобно газу).
  5. При остывании медной жидкости ниже температуры 1083 градусов происходит постепенная кристаллизация вещества. Медь вновь обретает твердую форму (чем ниже температура, тем интенсивней происходит затвердение вещества). Однако при необходимости жидкую медь можно и дальше нагревать (на химическом уровне будет происходить дальнейшее насыщение атомов энергией). При достижении температуры 2595 градусов по Цельсию жидкость начнет закипать, а медь начнет принимать газообразную форму. На практике длительное удержание вещества в газообразной форме проблематично — при контакте с атмосферным воздухом вещество будет быстро остывать, обратно превращаясь в жидкость. Чтобы обойти это ограничение, используются разные технологии. Оптимальная — нагрев вещества в тугоплавкой камере с поддержанием стабильной температуры выше критической точки (то есть выше температуры 2595 градусов). В таком случае температура среды будет высокой, а остывание вещества происходить не будет.

Чтобы расплавить/испарить медное изделие с помощью высокоточного нагревательного прибора, нагревать рекомендуется до чуть более высокой температуры. Скажем, в случае расплавления нагревать изделие следует до температуры 1100-1200 градусов (а не 1083 градусов). С практической точки зрения объясняется это просто — нагрев вещества происходит неравномерно, поэтому некоторые фрагменты медного изделия будут долго держать свою форму, тогда как другие — быстро расплавятся. К тому же вещество будет постоянно остывать, что может привести к кристаллизации отдельных фрагментов расплава.

Как расплавить медь в домашних условиях: технология и пошаговый процесс

Медь – пластичный материал, не подверженный окислению. Из него делают небольшие детали, используют в ремонтных работах. Переплавить лом можно самостоятельно в гараже, хозяйственной постройке или на собственной кухне. Специалисты подскажут, как расплавить медь в кустарных условиях. Технология несложная, главное при расплавлении учитывать физические свойства меди и сплавов.

Пошаговая инструкция по выплавке меди

Если вы приняли решение организовать техпроцесс по плавлению металла в домашних условиях, в первую очередь, вам следует знать температуру кипения меди. Она составляет 2650°C.

При этой температуре металл начинает кипеть и пузыриться.

Изделие, отлитое при такой температуре, будет иметь высокое количество пор, что негативно скажется как на его механических, так и на декоративных свойствах.

Если правильно подготовить оборудование и организовать процесс плавки, то в домашних условиях можно получить качественные изделия как для технического, так и для бытового и декоративного применения.

Для организации техпроцесса понадобятся следующее оборудование и расходные материалы:

  • форма, в которую будет заливаться металл;
  • газовая горелка;
  • горн;
  • уголь древесный;
  • крюк из железной проволоки;
  • пылесос со шлангом;
  • щипцы железные (для извлечения тигля из печи);
  • тигель для выплавки металла (обычно для таких целей используются керамические или глиняные тигли);
  • муфельная печь.

Технологический процесс производства меди

Медь, относимая по классификации к цветным металлам, стала известной в глубокой древности. Ее производство человек освоил раньше, чем железо.

Это объяснимо как частым ее нахождением на земной поверхности в доступном состоянии, так и относительной легкостью производства меди путем извлечения ее из соединений.

Свое название Cu она получила от острова Кипра, где древняя технология производства меди получила большое распространение.

Благодаря своей высокой электропроводимости (медь из всех металлов – вторая после серебра) она считается особенно ценным электротехническим материалом. Хотя электропровод, на который ранее шло до 50% мирового производства меди, сегодня чаще всего изготовляют из более доступного алюминия.

Медь, наряду с большинством прочих цветных металлов, считается все более дефицитным материалом. Это связано с тем, что сегодня называются богатыми те руды, что содержат около 5% меди, а основная ее добыча ведется переработкой 0,5%-ных руд.

В то время как в прошлые века эти руды содержали от 6 до 9% Cu.

Медь относят к тугоплавким металлам. При плотности в 8,98 г/см3 ее температуры плавления и кипения составляют соответственно 1083°C и 2595°C.

Соли одновалентной меди чуть окрашенные или совсем без цвета, а двухвалентная медь дает своим солям в водном растворе характерную окрашенность.

Чистая медь представляет собой тягучий металл красноватого или розового (на изломе) цвета. В просвете тонкогом слоя она может казаться зеленоватой или голубой. Большинство соединений меди имеют такие же цвета. Этот металл присутствует в составе множества минералов, из них при производстве меди в России применяют только 17.

Самое большое место в этом отводится сульфидам, самородной меди, сульфосолям и карбонатам (силикатам).

Также руды, наряду с пустой породой, включающей карбонаты кальция, магния, силикатов, пирит и кварц, могут содержать компоненты таких элементов, как: золото, олово, никель, цинк, серебро, кремний и др.

Не считая самородных руд, включающих медь в доступном виде, все руды подразделяются на сульфидные или окисленные, а также смешанные. Первые получаются как результат реакций окисления, а вторые считаются первичными.

Способы производства меди

Среди способов производства меди из руд с концентратами выделяют пирометаллургический метод и гидрометаллургический. Последний не получил широкого распространения. Это продиктовано невозможностью одновременного с медью восстановления прочих металлов.

Он используется для обработки окисленной или самородной руды с бедным содержанием меди. Отличаясь от него, пирометаллургический способ позволяет разработку любого сырья с извлечением всех компонентов. Очень эффективен он для подвергающихся обогащению руд.

Основной операцией такого процесса производства меди служит плавка. При ее производстве используют медные руды или их обожженные концентраты. В ходе подготовки к данной операции схемой производства меди предусмотрено их обогащение способом флотации.

Обжигу он подвергается в целях снижения до приемлемого содержания в нем серы.

Как плавить медь самостоятельно?

Чтобы вся работа прошла успешно, без каких-либо проблем, просто следуйте алгоритму, указанному далее:

  • Все осколки меди складываются в тигель, который помещается в муфельную печь.
  • Необходимо установить нужную позицию для регулятора нагрева. Следить за состоянием содержимого можно через окошко в дверце печи.
  • Далее, для того чтобы расплавить медь, необходимо дождаться требуемой температуры, чтобы металл начал плавиться. Как только это произошло, нужно открыть печь и с помощью специальных щипцов захватить тигель.
  • При плавлении на поверхности металла появится окисная пленка. Ее нужно будет убрать в сторону при помощи крюка, сделанного из железной проволоки.
  • После этого можно приступать к изготовлению различных изделий из меди, просто выливая ее в заранее подготовленные формочки.

Характеристики меди

Медь является одним из первых металлов, которые человек научился добывать и перерабатывать. Изделия из меди и ее сплавов использовались еще в 3 веке до н.э., о чем свидетельствуют исторические данные и результаты археологических раскопок. Широкому распространению меди во многом способствовало то, что она достаточно легко поддается обработке различными механическими способами. Кроме того, ее можно легко расплавить.

Медь, поверхность которой отличается явно выраженной желтовато-красной окраской, в силу своей мягкости легко поддается обработке методом пластической деформации. Поверхность меди при ее взаимодействии с окружающим воздухом покрывается оксидной пленкой, которая и окрашивает ее в такой красивый цвет.

Марки технической меди и их химический состав

Большое значение имеют и такие характеристики меди, как электро- и теплопроводность, по которым она занимает второе место среди всех металлов, уступая только серебру. Благодаря таким свойствам изделия из нее активно используются в электротехнической промышленности, а также в тех случаях, когда необходимо обеспечить быстрый отвод тепла от нагретого предмета.

Еще одним важным параметром меди, напрямую влияющим на объем энерго- и трудозатрат, расходуемых при производстве изделий из нее, является температура плавления. Для чистой меди температура, при которой металл переходит из твердого состояния в жидкое, составляет 1083°. Если смешать медь с оловом и получить бронзу, то температура плавления такого сплава будет составлять уже 930–1140° в зависимости от содержания в нем основной легирующей добавки. Такой , как латунь, который получают путем добавления к основному металлу цинка, обладает еще меньшей температурой плавления, которая находится в интервале 900–1050°.

Электрические свойства меди при температуре 20°

Если вы решили реализовать в домашних условиях такой технологический процесс, как , важно знать еще один параметр – температуру ее кипения. При 2560° медь начинает буквально кипеть, что хорошо заметно по видео данного процесса. Появлению пузырьков на поверхности жидкого металла и активному газообразованию в нем способствует углерод, выделяющийся из меди в результате ее окисления, происходящего при сильном нагреве

Появлению пузырьков на поверхности жидкого металла и активному газообразованию в нем способствует углерод, выделяющийся из меди в результате ее окисления, происходящего при сильном нагреве

Появлению пузырьков на поверхности жидкого металла и активному газообразованию в нем способствует углерод, выделяющийся из меди в результате ее окисления, происходящего при сильном нагреве.

При соблюдении технологии плавки на поверхности медного слитка могут остаться неглубокие поры, легко удаляемые шлифовкой

Описание элемента и распространение его в природе

Медь на Кипре добывали и плавили еще в середине третьего тысячелетия до нашей эры. Поэтому свое название элемент носит в честь упомянутого острова. Добыча и производство элемента подействовали на историю развития острова и его экономическое положение.

В периодической системе Менделеева медь получила 29 атомный номер. Элемент расположен в одиннадцатой группе четвертого периода. Элемент имеет золотисто-розовый цвет и принадлежит к пластичным переходным металлам. В природе встречается продукт в виде сульфидных руд, по распространению в литосфере металл занимает 23-е место. Медный блеск и колчедан являются самыми распространенными видами элемента.

В природных условиях элемент медь находят в руде и в виде самородков. Самые лучшие месторождения находятся на территории государства Чили. Медные месторождения встречаются там в осадочных породах. Медные песчаники и сланцы находятся в Казахстане и Читинской области России.

Медные сланцы в Казахстане

Медь наделена высокой электро и теплопроводностью. Ее удельная теплоемкость при температуре +20ºС равна 390 Дж/кг. Температура кипения металла – 2595ºС.

В момент плавления металл меняет свое агрегатное состояние, т. е. из кристаллической твердой фазы он переходит в жидкую форму. Меди присуще своя температура плавления, она имеет определенную зависимость от находящихся в металле примесей. Плавка меди чаще всего проходит при температуре +1083ºС. Если в медном сплаве присутствует олово, то процесс плавления способен произойти при +950–1140ºС. В составе с цинком теплота плавления меди равна от +900 до +1050ºС.

Процесс плавки проходит следующим образом: в начале нагрева рушится кристаллическая решетка металла, постепенно температура увеличивается, но в определенный период она удерживается в некотором значении. Именно в этот промежуток медь начинает плавиться. После окончания выплавки температура вновь повышается. Далее, металл постепенно охлаждается и принимает твердую форму.

Кипение металла очень похоже на бурление жидкости при активном нагреве. В это время выделяется газ. На поверхности расплавленного продукта появляются пузырьки. При максимальном нагреве из жидкого металла выделяется углерод, он формируется в результате окисления элемента.

Плавление с помощью самодельных приспособлений

Расплавить медь можно с помощью газовой горелки

У некоторых автолюбителей в гаражах имеются самодельные горны, с помощью которых можно плавить металлы. Если горн найти не удалось, его можно сделать своими руками.

  • На земле устанавливают опоры, например, силикатные кирпичи, на них кладут стальную сетку с мелкими ячейками.
  • На сетку насыпают слой древесного угля и поджигают его. Чтобы получить высокую температуру, нужно увеличить приток воздуха. Проще всего это сделать с помощью пылесоса, работающего на выдув», направив струю воздуха в место горения угля.
  • Остается поставить на горящие угли тигель и дождаться, когда медь расплавится. Расплав контактирует с атмосферным кислородом, поэтому активно образуется оксидная пленка, которую постоянно следует убирать. Можно присыпать поверхность расплава мелкими углями или пеплом от них. Образуется шлак, который потом легко отделяется.

Медные сплавы бронзу и латунь можно расплавить с помощью газовой горелки автогенной сварки или паяльной лампой с насадкой для поворота пламени. Пламя должно нагревать тигель равномерно снизу.

Оборудование для плавки меди

Подготовительный этап предусматривает приобретение специального оборудования. Расплавить медь в домашних условиях можно при наличии:

  1. Муфельной печи. Современные варианты исполнения позволяют контролировать мощность нагрева с высокой точностью, за счет чего существенно упрощается процесс плавки и можно достигнуть более качественного результата.
  2. Тигель, предназначенный для размещения шихты и ее плавки.
  3. Щипцы, при помощи которых тигель вытягивается с печи. Стоит учитывать, что поверхность будет накалятся, поэтому нужно использовать специальный механизм из жаростойкого сплава.
  4. Крюк и бытовой пылесос.
  5. Древесный уголь для покрытия поверхности.
  6. Форма из жаропрочного материала, по которой будет проводится литье.
  7. Газовая горелка или горн для повышения пластичности сплава.

Плавка газовой горелкой

Приобретают профессиональное оборудование только в том случае, когда литье меди проводится периодически. Оно характеризуется высокой стоимостью, а также эффективностью в применении.

Муфельная печь

Проще всего проводить переплавку меди в домашних условиях при установке муфельной печи. Среди ее особенностей отметим:

  1. Можно нагревать шихту до более высоких температур, за счет чего повышается текучесть. Это связано с высоким КПД, так как стенки конструкции отражают и аккумулируют тепло.
  2. Ускоряется процесс плавки.
  3. Высокая производительность. Равномерное распределение тепла позволяет одновременно плавить большое количеств меди.

Плавление меди в самодельной печи

Кроме этого, муфельная печь довольно проста в установке если соблюдать все правила безопасности. Проблемы по установке подобного оборудования в домашних условиях зачастую возникают по причине больших размеров конструкции.

Газовая горелка

Литье из меди в домашних условиях при применении газовой горелки часто проводится в случае, если медные изделия изготавливают крайне редко. Подобные процесс характеризуется небольшими финансовыми затратами. При выборе подобной технологии учитывается:

  1. Малый показатель КПД.
  2. На момент плавки возникают трудности с равномерным распределением тепла.
  3. Проводить работу следует на открытом пространстве с соблюдением правил пожарной безопасности.

Газовая горелка может разогреть тигель в течение нескольких минут. Стоит учитывать, что медь будет быстро окисляться.

Паяльная лампа

Плавление при применении паяльных ламп проводится крайне редко. Это связано с невысокой эффективностью подобного метода. Как и в предыдущем случае, при использовании паяльной лампы происходит активное окисление поверхности.

Плавка меди в самодельной печи при помощи паяльной лампы

При применении паяльной лампы учитывается тот момент, что для разогрева металла требуется довольно много времени. При этом нагрев должен проходить без перерыва, так как металл остывает быстро, после чего начинает кристаллизоваться.

Горн

В домашних условиях отливка медных заготовок может проводится в горне. Подобная печь характеризуется следующими особенностями:

  1. Она часто используется в кузнечном деле.
  2. Стоит учитывать низкий показатель КПД, за счет которого на плавку меди уходит намного больше времени.
  3. Различают две конструкции: открытого и закрытого типа.


Устройство горна


Горн для плавки меди

Температура плавки при применении горна относительно низкая. Поэтому не вся медь может плавится рассматриваемым способом.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий