Чертежи зубчатого колеса

Чертеж шестерни

Чертеж шестерни должен выполняться в соответствии с требованиями ЕСКД, содержать главный вид и всю необходимую информацию:

  • диаметр вершин зубьев (внешний) до притупления кромки
  • диаметр вершин зубьев (внешний) после притупления кромки
  • расстояние от базовой до внешней плоскости окружности верхней кромки зубьев
  • угол конусности зубьев
  • угол дополнительного конуса
  • ширина венца
  • расстояние базовое
  • радиусы кривизны и размеры фасок
  • положение сечения

В правом углу чертежа, размещают таблицу, состоящую из трех частей, в которой указывают основные параметры:

  • основные данные – верхняя часть
  • контрольные данные – центральная часть
  • справочные данные – нижняя часть

Справка:Неиспользуемые строки в таблице исключаются или ставится прочерк.Подробнее о каждой величине прописано в ГОСТ 2.405-75.

Чертеж конического колеса.

Чертеж червячного колеса.

Шестерня.

Чертеж шестерни.

Конструктивное отличие зубчатых колес определяется:

  • по геометрии зуба в поперечном сечении (форма) и способов контакта между собой: прямой – контактирует по точке; вогнутый – контактирует по линии; роликовый – контактирует с гребневым роликом.
  • по типам колес: полное – когда оно постоянно вращается; сектор – когда оно поворачивается на определенный угол; сектор с роликом – когда рабочая длина контактируемого ролика уменьшена, по сравнению с контактируемой поверхностью глобоидального червяка.

Заказать чертеж

Что представляет собой шестерня

Шестерня – это небольшое колесико с зубьями, которое крепится к специальной вращающейся оси. Поверхность у шестеренки в данном случае может быть как конической, так и цилиндрической.

Шестеренчатые передачи также имеют свою классификацию:

  1. Прямозубые. Наиболее распространенный вид шестеренок, у которых зубья зачастую располагаются в радиальных плоскостях.
  2. Скошенные. По-другому этот тип называется еще косозубым, а его использование в ходу у бензо- и электрических инструментов. По отношению к вращающейся оси они находятся под определенным углом.
  3. Червячные. Их еще называют спиральными шестернями, которые используются преимущественно для рулевого управления автомобилем.
  4. Винтовые. Они имеют зачастую форму цилиндра, а также расположены по всей линии винта. Располагаются такие шестеренки на валах, которые расположены перпендикулярно к вращающейся оси.

Данные разновидности являются наиболее распространенными, однако далеко не единственными, поэтому используемый вид напрямую соотносится с тем, какую функцию он должен будет выполнять.

При этом каждая шестеренка имеет определенное количество зубьев, что определяется ее назначением. Разница между количеством используемых зубьев необходима, поскольку благодаря этому фактору появляется возможность регулировать обороты вала и крутящийся момент. Шестеренки также разделяются на ведущие и ведомые. Ведущей называется та шестерня, к которой вращательный момент подводится снаружи, а ведомой – та, с которой она снимается.

Почему шестеренку называют так?

Технически это понятно. Изначально «шестерёнка» — самое маленькое колесо в зубчатой передаче. Меньше шести зубьев там не бывает даже в теории, захват не обепечивается. … В машиностроении ведомое колесо зубчатой передачи редуктора называется колесом».

Устройство конической передачи

Коническая зубчатая передача представляет собой пару конических шестерен — зубчатых колес, прошедших обработку под заданным углом. После обработки обе шестерни получают изменяемый от основания к вершине диаметр, форму, напоминающую конус, благодаря чему и получили свое название. Зубья шестерен вырезаются на боковой поверхности, при работе конические шестерни сопрягаются боковыми плоскостями. Конические пары в силу особенностей своей конструкции считаются наиболее сложными в изготовлении и сборке. К тому же они имеют не самую высокую несущую способность (например, у конической передачи при прочих равных параметрах она на 15% ниже). Тем не менее в узлах и механизмах, где необходима передача крутящего момента с угловым смещением, альтернативы им нет. Элемент пары, передающий крутящий момент, называют ведущим (шестерней), а тот, что принимает крутящий момент — зубчатым колесом (ведомым). Результирующий угол изменения направления вращения равен сумме углов обеих конических шестерен. Наиболее часто в машинах и механизмах встречается ортогоническая коническая пара, изменяющая направление вращающего момента под углом 90 градусов (2 х45). Возможности конической передачи не исчерпываются способностью изменять направление оси вращения в широком диапазоне углов. С помощью такой конструкции можно также изменить частоту вращения (число оборотов в минуту) и мощность.

Геометрические параметры зубчатых колес

Для обеспечения качественного зацепления и условий для передачи большого усилия создается особая геометрия зубчатого колеса. Она характеризуется следующими особенностями:

  1. Боковые грани на момент работы механизма соприкасаются. Пятно контакта обеспечивается специальной криволинейной формой.
  2. Наибольшее распространение получил эвольвентный профиль.
  3. Создается угол зацепления таким образом, чтобы даже при несущественном смещении не происходило заклинивание механизма. Параметры зубчатых колес указываются на чертежах.

Основным элементом передачи можно считать зубчатые колеса. Их основными параметрами назовем следующие моменты:

  1. Делительная окружность. Она указывается на всех чертежах. Под этим параметром понимают соприкасающиеся окружности, катящиеся одна по другой без скольжения.
  2. Шаг расположения зубьев-расстояние между профильными поверхностями соседних зубьев. Этот параметр указывается для всех передач и механизмов в спецификации и на чертежах.
  3. Длина делительной окружности или модуль также является важным параметром, который нужно учитывать.
  4. Высота делительной головки.
  5. Зуб является важным элементом каждого колеса. Он характеризуется довольно большим количеством различных характеристик, среди которых отметим высоту ножки, самого зуба и делительной головки.
  6. Диаметр окружности вершин и впадин зубьев.

Некоторые их приведенных выше параметров рассчитываются при проектировании передачи, другие выбираются по табличным данным. Прямозубая передача проще всего в проектировании и изготовлении, но она характеризуется менее привлекательными эксплуатационными характеристиками. Крутящий момент и другие параметры выбираются в зависимости от поставленной задачи при проектировании конструкции.

Основные параметры зубчатого колеса

Создавать рассматриваемую конструкцию следует исключительно при заблаговременном создании чертежа, на котором отображаются основные параметры зубчатого колеса. Стоит отметить, что по создаваемой схеме некоторых механизмов также можно определить неправильный выбор основных параметров. В большинстве случае также делается упрощенный чертеж вала, за счет чего можно сразу определить принцип действия механизма.

Основными параметры, которые относятся к зубчатым колесам, являются:

  1. Делительная окружность пары зубчатых колес. Данный показатель применяется в случае проектирования зубчатой пары самого различного типа. Она определяется соприкасающимися окружностями, которые катаются одна по другой без скольжения. Применяется для обозначения момента зацепления и сопряжения. Для обозначения на чертеже применяется буква d. Стоит учитывать, что само обозначение зачастую не проставляется, а только указывается соответствующий размер.
  2. Окружный шаг зубьев. Этот параметр применяется для определения расстояния между отдельными профильными поверхностями соседних зубьев. Подобный показатель вычисляется путем разделения значения делительной окружности на число зубьев.
  3. Число зубьев. Достаточно важным моментом назовем то, что на чертеже не проводится отображение всех зубьев. В некоторых случаях проводится создание эскиза нескольких зубьев. За счет этого существенно упрощается поставленная задача по созданию рассматриваемого документа.
  4. В создаваемой таблице в обязательном порядке указывается число зубьев. Подобная информация позволяет проводить расчеты и определение других наиболее важных параметров.
  5. Длина делительной окружности.
  6. Основные геометрические параметры зуба. Основной частью зубчатых колес является именно зуб. Он применяется

Если не учитывать основные параметры, то есть вероятность быстрого износа поверхности и появления многих других проблем.

Коническое зубчатое колесо чертеж, зацепление

Конические зубчатые колёса

При изготовлении чертежа конического зубчатого колеса с натуры, по аналогии с цилиндрическими колёсами, измеряют наружный диаметр окружности выступов De, затем определяют модуль m и угол внешнего конуса по выступам зубцов (фиг. 363).

Для этого ставят зубчатое колесо торцом ступицы на разметочную плиту и измеряют высоту зубца h по наружному его торцу. Отклады­вают от окружности выступов по торцу зубца размер, равный h/2.2, и

наносят рейсмасом на всех зубцах риску. Риска пройдёт по начальному диаметру колеса d. Измерив d и поделив его на число зубцов z, определяют модуль m. Полученный модуль может несколько отличаться от стандартного вследствие неточности измерений, и поэтому его округ­ляют до ближайшего стандартного значения модуля. Затем производят вычисление и обмер всех элементов колеса. Диаметр начальной окруж­ности определяют по формуле d = mz. Если известно передаточное число зубчатой пары, т. е. отношение числа зубцов большого колеса z2 к числу зубцов малого z1 то половина угла при вершине начального конуса ?2 большого колеса определится (при угле между осями валов 90°) по формуле

tg?2=z2/z1 = i

где i —передаточное число.

Если передаточное число неизвестно, то угол начального конуса можно получить измерением при помощи угломера, использовав для этого ранее проведённую риску. Так же может быть измерен и угол конуса впадин.

При вычерчивании конического зацепления необходимо, чтобы: вер­шины начальных конусов обоих колёс находились на пересечении их осей; в этой же точке пересекались линии, соответствующие начальным окружностям зубчатых колёс.

Чертёж конического колеса и пример нанесения размеров, конст­руктивных и технологических надписей показан на фиг. 354.

9.2. Последовательность выполнения чертежей деталей

Чертёж детали – это документ, содержащий изображение детали и другие данные, необходимые для её изготовления и контроля.Перед выполнением чертежа необходимо выяснить назначение детали, конструктивные особенности, найти сопрягаемые поверхности. На учебном чертеже детали достаточно показать изображение, размеры и марку материала.При выполнении чертежа детали рекомендуется следующая последовательность:

  1. Выбрать главное изображение (см. ).
  2. Установить количество изображений – видов, разрезов, сечений, выносных элементов, которые однозначно дают представление о форме и размерах детали, и дополняющих какой-либо информацией главное изображение, помня о том, что количество изображений на чертеже должно быть минимальным и достаточным.
  3. Выбрать масштаб изображений по ГОСТ 2.302-68. Для изображений на рабочих чертежах предпочтительным является масштаб 1:1. Масштаб на чертеже детали не всегда должен совпадать с масштабом сборочного чертежа. Крупные и не сложные детали можно вычерчивать в масштабе уменьшения (1:2; 1:2,5; 1:4; 1:5 и т.д.), мелкие элементы лучше изображать в масштабе увеличения (2:1; 2,5:1; 4:1; 5:1; 10:1; и т.д.).
  4. Выбрать формат чертежа. Формат выбирается в зависимости от размера детали, числа и масштаба изображений. Изображения и надписи должны занимать примерно 2/3 рабочего поля формата. Рабочее поле формата ограничено рамкой в строгом соответствии с ГОСТ 2.301-68* по оформлению чертежей. Основная надпись располагается в правом нижнем углу (на формате А4 основная надпись располагается только вдоль короткой стороны листа);
  5. Выполнить компоновку чертежа. Для рационального заполнения поля формата рекомендуется тонкими линиями наметить габаритные прямоугольники выбранных изображений, затем провести оси симметрии. Расстояния между изображениями и рамкой формата должно быть примерно одинаковым. Оно выбирается с учётом последующего нанесения выносных, размерных линий и соответствующих надписей.
  6. Вычертить деталь. Нанести выносные и размерные линии в соответствии с ГОСТ 2.307-68. Выполнив тонкими линиями чертёж детали, удалить лишние линии. Выбрав толщину основной линии, обвести изображения, соблюдая соотношения линий по ГОСТ 3.303-68. Обводка должна быть чёткой. После обводки выполнить необходимые надписи и проставить числовые значения размеров над размерными линиями (предпочтительно размером шрифта 5 по ГОСТ 2.304-68).
  7. Заполнить основную надпись. При этом указать: наименование детали (сборочной единицы), материал детали, её код и номер, кем и когда был выполнен чертёж и т.д. (Рисунок 9.1)

Ребра жесткости, спицы при продольных разрезах показывают не заштрихованными.Рисунок 9.1 – Рабочий чертеж детали «Корпус»

1.2. Вычерчивание элементов зубчатого зацепления

Подсчитав все размеры элементов зацепления, приступаем к вычерчиванию зубчатого зацепления.

Размер в масштабе, мм

Пример расчета параметров зубчатого зацепления здесь.

Профили зубьев вычерчиваем в такой последовательности:

1. На чертеже под произвольным углом откладываем линию центров О1О2. Длина линии центров равна межосевому расстоянию О1О2=aw.2. Из концов отрезка (линии центров) откладываем начальные окружности dw1 и dw2. Начальные окружности dw1 и dw2 касаются друг друга в полюсе P. 3. Откладываем и строим основные окружности dв1 и dв2.

4. Построение эвольвенты колеса 2.

4.1. Из полюса P к основной окружности проводим касательную РА.Отрезок АР (см. рис.) делим на четыре равные части (АВ = ВС = СD = DP) и из точки В проводим дугу радиуса r = ВР до пересечения в точке Р1 с основной окружностью; тогда АР1 = АР.

4.2. После этого, отрезок АР снова делим на произвольное число равных частей длиной 15…20мм (число делений целесообразно взять четным, например 8). Дугу АР1 также делим на такое число равных частей (Р11’= 1′ 2′ = 2′ 3′ = …).

4.3. Точки 1′; 2′; 3’… соединяем с центром О2.

4.4. Через точки 1′; 2′; 3’… проводим перпендикуляры к соответствующим радиусам О21′; О22′; О23’…. На перпендикулярах (они касаются основной окружности) откладываем отрезки 1’1»; 2’2»; 3’3»…, соответственно равные отрезкам Р1; Р2; Р3….

4.5. Соединяя точки Р1; 1»; 2»; 3»… плавной кривой, получаем часть эвольвенты второго колеса.

4.6. Для продолжения построения профиля зуба второго колеса откладываем и строим окружности выступов и впадин зубьев второго колеса. Следует отметить, что радиус окружности впадин может быть больше, равен и меньше радиуса rв основной окружности. Это зависит от числа Z зубьев колеса и от коэффициента смещения х. В нашем случае dв2 > df2

4.6. Для завершения построения эвольвенты второго колеса вводим дополнительные точки 8 и 9. Точки 8 и 9 откладываем против часовой стрелки от точки А. Пользуясь описанным выше методом, находим точки 8»и 9». Завершаем построение эвольвенты второго колеса.

4.7. Профиль ножки у основания зуба можно построить упрощенно. Если rf

Зубчатое колесо в Компасе

1 Создаем документ Чертеж, устанавливаем формат А3, ориентация – горизонтальная.

2 Вызываем библиотеку Валы и механические передачи 2d, нажав на кнопку Менеджер библиотек на стандартной панели. Выбираем вкладку Расчет и построение. Дважды щелкаем по нужной библиотеке.

3 Дважды нажимаем на команду Построение модели.

4 В окне нажимаем Создание новой модели, строить будем в разрезе.

5 Фиксируем первую точку изображения и приступаем к построению чертежа зубчатого колеса.

5.1 Для начала построим выступающую часть ступицы. Во внешнем контуре выбираем Цилиндрическую ступень.

Задаем ее размеры: диаметр 70 мм, длина – 5 мм.

Нажимаем кнопку Ок (зеленая стрелочка).

5.2 Т. К. вычерчивать будем прямозубое зубчатое колесо, то во вкладке Элементы механических передач, выбираем Цилиндрическую шестерню.

5.2  Задаем фаски справа и слева по 1,6 мм и запускаем расчет по межосевому расстоянию.

5.3 В окошко вводим значения параметров передачи, рассчитываем межосевое расстояние. Переходим на вторую страницу.

5.4 Нажимаем на кнопку Расчет, дожидаемся появления результатов проверки внесенных данных системой, и, если все в норме, нажимаем кнопку Закончить расчеты.

5.5 Выбираем шестерню или колесо (в данном случае без разницы). Жмем Ок.

5.6 Дочерчиваем часть ступицы.

5.7 Оформляем внутренний контур колеса. Выбираем внутреннюю цилиндрическую ступень, делаем в ней фаски 2*45º

5.8 Выбираем дополнительные построения и строим шпоночный паз, размеры его определяются автоматически.

5.9 Возвращаемся к внешнему контуру и создаем кольцевые пазы и отверстия (дополнительные построения).

Колесо почти готово.

5.10 Нажимаем на кнопку дополнительных построений во внешнем контуре, выбираем построение таблицы параметров. Создаем упрощенную таблицу.

5.11 Сгенерируем твердотельную модель колеса.

Нажимаем Сохранить модель и выйти.

Чертеж зубчатого колеса в Компасе остается дополнить построенным от руки контуром отверстия для вала со шпоночным пазом, проставленными размерами и нанесенной шероховатостью поверхности.

Технические требования и знак неуказанной шероховатости берем из меню Вставка.

Посмотрите урок, если что-то непонятно.

Скачать модель и чертеж можно здесь.

Зубчатое колесо в Компасе с помощью библиотеки построить достаточно просто и быстро. А это, согласитесь, большой плюс.

9.4 Шероховатость поверхностей

При любом способе изготовления деталей абсолютно гладкие поверхности получить невозможно.Совокупность микронеровностей поверхности выделенная на определенной (базовой) длине, называется шероховатостью поверхности.

Шероховатость поверхностей регламентируется следующими стандартами:– ГОСТ 25142 – 82. Шероховатость поверхностей. Термины и определения.– ГОСТ 2789 – 73. Шероховатость поверхностей. Параметры и характеристики.– ГОСТ 2.309 – 73. Обозначения шероховатости поверхностей.Требования стандартов распространяются на поверхности изделий, изготовленных из любых материалов и любыми методами, при этом дефекты поверхности из рассмотрения исключаются. Для оценки шероховатости поверхности стандартом установлены шесть параметров: три из них — высотные, два — шаговые, последний связан с суммарной длинной опорной поверхности. На учебных чертежах будем пользоваться двумя параметрами:

  • Ra — среднее арифметическое отклонение профиля от некоторой средней линии на базовой длине;
  • Rz — сумма средних арифметических отклонений пяти наибольших выступов и пяти наибольших впадин профиля.

Предпочтительным считается и чаще используется параметр Ra, который наиболее информативен и обеспечен надежными средствами измерений.

ГОСТ 2.309 – 73 определяет три знака для обозначения шероховатостии структуру обозначения:

а) — способ обработки поверхности конструктором не регламентируется;б) — поверхность образована удалением слоя материалов (механическая обработка);в) — поверхность образована без удаления слоя материала (штамповка, гибка, литье…).

Выбор параметров шероховатости в зависимости от видов и методов обработки поверхности:

На чертежах проставляют знак шероховатости так, чтобы он был ориентирован к поверхности.

Обозначения шероховатости поверхности, в которых знак имеет полку, располагают относительно основной надписи чертежа так, как показано на рисунке:

9.8. Выполнение чертежа пружины

Пружины применяются для создания определённых усилий в заданном направлении. По виду нагружения пружины подразделяются на пружины сжатия, растяжений, кручения и изгиба; по форме – на винтовые цилиндрические и конические, спиральные, листовые, тарельчатые и пр. правила выполнения чертежей различных пружин устанавливает ГОСТ 2.401-68. На чертежах пружины вычерчивают условно. Витки винтовой цилиндрической или конической пружины изображают прямыми линиями, касательными к участкам контура. Допускается в разрезе изображать только сечения витков. Пружины изображают с правой навивкой с указанием в технических требованиях истинного направления витков. Пример выполнения учебного чертежа пружины приведён на Рисунке 9.13.Чтобы получить на пружине плоские опорные поверхности крайние витки пружины поджимают на ? витка или на целый виток и шлифуют. Поджатые витки не считаются рабочими, поэтому полное число витков n равно числу рабочих витков плюс 1,5?2:n1=n+(1.5?2) (Рисунок 9.14).Построение начинают с проведения осевых линия, проходящих через центры сечений витков пружины (Рисунок 9.15, а). Затем на левой стороне осевой линии проводят окружность, диаметр которой равен диаметру проволоки, из которой изготовлена пружины. Окружность касается  горизонтальной прямой, на которую опирается пружина. Затем необходимо провести полуокружность из центра, расположенного в пересечении правой оси с той же горизонтальной прямой. Для построения каждого последующего витка пружины слева на расстоянии шага строят сечения витков. Справа каждое сечение витка будет располагаться напротив середины расстояния между витками, построенными слева. Проводя касательные к окружностям, получают изображение пружины в разрезе, т.е. изображение витков, лежащих за плоскостью, проходящей через ось пружины. Для изображения передних половин витков так же проводят касательные к окружностям, но с подъёмом вправо (Рисунок 9.15, б). Переднюю четверть опорного витка строят так, чтобы касательная к полуокружности касалась одновременно и левой окружности в нижней части. Если диаметр проволоки 2мм и менее, то пружину изображают линиями толщиной 0,5?1,4мм. При вычерчивании винтовых пружин с числом витков более четырёх показывают с каждого конца один-два витка, кроме опорных проводя осевые линии через центры сечений витков по всей длине. На рабочих чертежах винтовые пружины изображают так, чтобы ось имела горизонтальное положение.Как правило, не рабочем чертеже помещают диаграмму испытаний, показывающую зависимость деформаций (растяжения, сжатия) от нагрузки (Р1; Р2; Р3), где Н1 – высота пружины при предварительной деформации Р1; Н2 – то же, при рабочей деформации Р2; Н3 – высота пружины при максимальной деформации Р3; Н – высота пружины в рабочем состоянии. Кроме того, под изображением пружины указывают:

  • Номер стандарта на пружину;
  • Направление навивки;
  • n – число рабочих витков;
  • Полное число витков n;
  • Длину развёрнутой пружины L=3,2?D?n1;
  • Размеры для справок;
  • Другие технические требования.

На учебных чертежах рекомендуется из перечисленных пунктов указать п.п. 2,3,4,6. Выполнение диаграммы испытаний также не предусмотрено при выполнении учебного чертежа.Рисунок 9.13 – Рабочий чертеж пружины

аб

Рисунок 9.14. Изображения поджатых витков пружиныРисунок 9.15. Последовательность построения изображения пружины

ОБЩИЕ ПОЛОЖЕНИЯ

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Принципиальная схема расчета геометрии приведена на чертеже.

1.2. Термины и обозначения, примененные в настоящем стандарте, соответствуют ГОСТ 16530-70* и ГОСТ 16531-70**. __________________ * Действует ГОСТ 16530-83; ** Действует ГОСТ 16531-83. – Примечание «КОДЕКС».

1.3. Наименования параметров, приводимых на рабочих чертежах зубчатых колес в соответствии с ГОСТ 2.403-75, а также межосевое расстояние зубчатой передачи, выделены в таблицах настоящего стандарта полужирным шрифтом.

1.4. При отсутствии в обозначениях параметров индексов «1» и «2», относящихся соответственно к шестерне и колесу, имеется в виду любое зубчатое колесо передачи.

1.5. При отсутствии дополнительных указаний везде, где упоминается профиль зуба, имеется в виду главный торцовый профиль зуба, являющийся эвольвентой основной окружности диаметра .

1.6. Расчетом определяются номинальные размеры зубчатой передачи и зубчатых колес.

1.7. Расчет некоторых геометрических и кинематических параметров, применяемых в расчете зубчатой передачи на прочность, приведен в приложении 5.

Классификация

Все многообразие колесных пар специалисты разделяют по различным признакам на несколько групп.

По взаиморасположению элементов

В данной категории выделяются такие виды зубчатых передач как:

  • цилиндрическая (колеса в них находятся параллельно по отношению друг другу);
  • коническая (с перекрещивающимися валами и, соответственно, деталями тандема);
  • зубчато-винтовая (при скрещивающимся расположении элементов).

Первые используются наиболее широко, а их изготовление требует наименьших временных и финансовых затрат.

Детали конических передач по форме напоминают усеченный конус, и соприкасаются друг с другом боковыми сторонами. Это увеличивает площадь взаимодействующих поверхностей. Однако такая конструкция имеет большую чувствительность к погрешностям, и не способна выдерживать слишком большие нагрузки. Поэтому ее нередко используют в машинах и агрегатах, где есть другие типы зубчато-колесных механизмов.

Что касается зубчато-винтового типа, второе его название – червячный хорошо передает особенности соединения, которое состоит из червяка (винта) и колеса. К его достоинствам относят плавный ход, практическую бесшумность, большое передаточное отношение и способность к самоторможению.

По форме зуба

Зацепления в колесных связках отличаются по виду и профилю зубьев. На сегодняшний день известны:

  • Зубчатые передачи эвольвентного зацепления. При таком варианте профили выступающих элементов колеса и шестерни очерчены по эвольвенте окружности. Это дает возможность сохранять стабильность передаваемой энергии при взаимодействии деталей.
  • Циклоидальное. В нем профили зубьев очерчены по участкам циклоид. Достоинства этого вида – компактность в сочетании со способностью выдерживать усиленные нагрузки, плавность хода.
  • Круговые (передача Новикова). Данный вид предполагает перемещение площадки контакта зубьев вдоль профиля зуба. Это обеспечивает более высокие значения передаточных чисел и возможность использовать даже при максимальных нагрузках.

Чаще всего, в механизмах применяются передачи с эвольвентным вариантом зацепления, что обусловлено достаточной простотой их изготовления, монтажа и эксплуатации. Циклоидальные и круговые передачи, в свою очередь, требуют больших затрат на производство, стоят дороже, но и позволяют обеспечить улучшенный функционал механизмов.

По расположению зубьев

По своему расположению зубья колеса и шестерни передачи бывают:

  • Прямыми. Востребованы там, где необходимо передать крутящий момент с не очень большой и средней нагрузкой. Устанавливаются в механизмах с необходимостью смещения колес вдоль оси вала во время рабочего процесса.
  • Косыми. Этот вариант позволяет повысить плавность вращения колес в тандеме.
  • Шевронными – в виде «в елочку», сформированной из двух рядов косых зубьев.

Изготовление первого варианта деталей требует меньших финансовых и временных затрат, что снижает их стоимость и делает наиболее востребованными. Однако второй и третий вариант обладают рядом неоспоримых достоинств, которые позволяют комплектовать ими наиболее ответственные механизмы, работающие в условиях повышенных нагрузок.

Другие варианты классификации

Помимо особенностей взаиморасположения элементов в колесной паре, форм и расположения зубьев на них, передачи также классифицируются по:

  • Конструкции (открытые и закрытые). Вторые могут работать только при постоянном наличии смазки, первые функционируют на сухом ходу.
  • Окружной скорости (тихоходные – до 3 м/с; средние – от 3 до 15 м/с; быстроходные – свыше 15 м/с).
  • Числу ступеней (одно- и многоступенчатые).
  • Точности зацепления (существует 12 степеней, однако чаще всего используют с 6 по 10).

Кроме того, различают силовые зубчатые передачи и кинематические (не силовые). Первые передают вращающий момент и их размеры зависят от прочности зубьев. Вторые же практически не передают нагрузку, а их габариты определяются конструктивными особенностями.

Документы

Сортировать по :
названию | дате | популярности

Шестерня m=2.5, Z=35

популярный!

Дата добавления:08.06.2010
Дата изменения:22.06.2010
Размер файла:55.37 Кбайт
Скачиваний:1321

Чертеж шестерни используемой в станке 2А554.

Чертежи выполнены в двух форматахcdw – Компас 9 СП2dwg – Autocad 2000

  • Скачать

  • Подробнее

Блок-шестерня m=2.5, Z1=33, Z2=19

популярный!

Дата добавления:09.06.2010
Дата изменения:22.06.2010
Размер файла:51.48 Кбайт
Скачиваний:1141

Чертеж блок-шестерни. Применяется в станке 2Л53У.

Чертежи выполнены в двух форматахcdw – Компас 9 СП2dwg – Autocad 2000

  • Скачать

  • Подробнее

Шестерня m=2.5, Z=20

популярный!

Дата добавления:09.06.2010
Дата изменения:22.06.2010
Размер файла:41.4 Кбайт
Скачиваний:1096

Чертеж шестерни с посадкой на шпонку. Используется в станке 2Л53У.

Чертежи выполнены в двух форматахcdw – Компас 9 СП2dwg – Autocad 2000

  • Скачать

  • Подробнее

Шестерня m=2.5, Z=51

популярный!

Дата добавления:09.06.2010
Дата изменения:22.06.2010
Размер файла:50.61 Кбайт
Скачиваний:1069

Чертеж шестерни с посадкой на шлицы. Применяется в станке 2Л53У.

Чертежи выполнены в двух форматахcdw – Компас 9 СП2dwg – Autocad 2000

  • Скачать

  • Подробнее

Вал-шестерня m=3, Z=21

Дата добавления:09.06.2010
Дата изменения:22.06.2010
Размер файла:49.69 Кбайт
Скачиваний:949

Чертеж вал-шестерни. Используется в станке 2Н57.

Чертежи выполнены в двух форматахcdw – Компас 9 СП2dwg – Autocad 2000

  • Скачать

  • Подробнее

Шестерня m=2.5, Z=30

Дата добавления:09.06.2010
Дата изменения:22.06.2010
Размер файла:43.64 Кбайт
Скачиваний:945

Чертеж шестерни. Используется в станке 2Н57.

Чертежи выполнены в двух форматахcdw – Компас 9 СП2dwg – Autocad 2000

  • Скачать

  • Подробнее

Шестерня m=2.5, Z=44

Дата добавления:09.06.2010
Дата изменения:22.06.2010
Размер файла:43.79 Кбайт
Скачиваний:949

Чертеж шестерни. Используется в станке 2Н57.

Чертежи выполнены в двух форматахcdw – Компас 9 СП2dwg – Autocad 2000

  • Скачать

  • Подробнее

Шестерня m=3, Z=24

популярный!

Дата добавления:09.06.2010
Дата изменения:22.06.2010
Размер файла:43.27 Кбайт
Скачиваний:1028

Чертеж шестерни. Используется в станке 2Н57.

Чертежи выполнены в двух форматахcdw – Компас 9 СП2dwg – Autocad 2000

  • Скачать

  • Подробнее

Шестерня m=2.5, Z=56

популярный!

Дата добавления:09.06.2010
Дата изменения:22.06.2010
Размер файла:43.82 Кбайт
Скачиваний:1002

Чертеж шестерни. Используется в станке 2Н57.

Чертежи выполнены в двух форматахcdw – Компас 9 СП2dwg – Autocad 2000

  • Скачать

  • Подробнее

Шестерня m=2.5, Z=39

Дата добавления:09.06.2010
Дата изменения:22.06.2010
Размер файла:41.27 Кбайт
Скачиваний:926

Чертеж шестерни. Используется в станке 2Н57.

Чертежи выполнены в двух форматахcdw – Компас 9 СП2dwg – Autocad 2000

  • Скачать

  • Подробнее

Неметаллические зубчатые колеса.

Неметаллические зубчатые колеса. Зубчатые колеса из пластмасс (текстолит, древопластики, полиамиды и т. п.) работают более бесшумно, чем металлические, что имеет особое значение при больших скоростях. Чтобы понизить коэффициент трения между зубьями, одно зубчатое колесо делают из пластмассы, а второе выполняют металлическим. Пластмассы имеют сравнительно небольшие сопротивления срезу и смятию, поэтому в большинстве случаев для передачи момента применяют стальную втулку-ступицу, прочно соединяемую с телом колеса. В небольшие колеса ступицу устанавливают при формовании. Для лучшего сцепления наружную поверхность ступицы делают рифленой (накатанной) (рис. 12). Чтобы предотвратить выкрашивание и откалывание отдельных слоев пластмассы, края зубьев защищают стальными дисками (рис. 13). Толщину диска рекомендуется принимать равной половине модуля, но не более 8 мм и не менее 2 мм. Материал дисков —сталь Ст.2, Ст.З.

Зубчатые колеса больших размеров обычно делают сборными из отдельных секций.

Ширину зубчатого колеса из пластмасс принимают равной ширине зацепляющегося с ним металлического колеса или несколько меньше во избежание местного износа и выработки зубьев

Конструкция зубчатого колеса

Встречается просто огромное количество разновидностей шестерен, все они характеризуются своими определенными особенностями. Среди конструкционных особенностей отметим следующие моменты:

  1. При изготовлении цилиндрических и конических шестерен с прямым зубом рабочая часть создается заодно целое с валом. Это связано с тем, что размеры конструкции существенно уменьшаются. За счет создания такой конструкции можно получить деталь с высокой точностью и износостойкостью.
  2. Встречаются и шестерни насадного типа. Они весьма распространены в случае, когда диаметр рабочей части большой. За счет установки насадного варианта исполнения есть возможность проводить обслуживание конструкции.
  3. При диаметре менее 500 мм изделие получается методом ковки и отливки, а также при применении технологии сварки. Вариант исполнения более 500 мм изготавливаются методов отливки и сварки.
  4. Клепанные или свертные колеса могут устанавливаться в случае, если есть необходимости в экономии используемого материала.

Конструктивными особенностями подобного варианта исполнения можно назвать:

  1. В качестве заготовки применяется диск определенной толщины.
  2. В центральной части есть посадочное отверстие с прорезью для шпонки. Как правило, оно имеет достаточно большую кайму.
  3. Рабочая часть представлена зубьями, которые могут быть расположены прямо или под углом. При этом геометрия зуба может существенно отличаться, все зависит от области эксплуатации.

Изготовление цилиндрических зубчатых колес проводится при применении специального оборудования. Примером можно назвать зубонарезные станки, которые работают по методу обкатки. Стоит учитывать, что процесс изготовления конических зубчатых колес существенно отличается.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий