Теплопроводность металлов

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Примеси в медных сплавах

отсюда

Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

Образующие с медью твердые растворы

К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

Не растворяющиеся в меди примеси

Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.

Примеси, образующие с медью хрупкие химические соединения

К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. Наличие серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.

Физические свойства углерода:

400Физические свойства
401Плотность*1,8-2,1 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело) – аморфный углерод, 2,267 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело) – графит,

3,515 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело) – алмаз

402Температура плавления
403Температура кипения
404Температура сублимации3642 °C (3915 K, 6588 °F) – графит
405Температура разложения1000 °C (1273 K, 1832 °F) – алмаз. Продукты разложения алмаза – графит
406Температура самовоспламенения смеси газа с воздухом
407Удельная теплота плавления (энтальпия плавления ΔHпл)
408Удельная теплота испарения (энтальпия кипения ΔHкип)715 кДж/моль (сублимация)
409Удельная теплоемкость при постоянном давлении
410Молярная теплоёмкость*8,517Дж/(K·моль) – графит, 6,155 Дж/(K·моль) – алмаз,
411Молярный объём5,31 см³/моль – графит, 3,42 см³/моль – алмаз,
412Теплопроводность119-165 Вт/(м·К) (при стандартных условиях) – графит, 900-2300 Вт/(м·К) (при стандартных условиях) – алмаз
413Коэффициент теплового расширения0,8 мкм/(М·К) (при 25 °С) – алмаз
414Коэффициент температуропроводности
415Критическая температура
416Критическое давление
417Критическая плотность
418Тройная точка4326,85 °C (4600 К, 7820,33 °F), 10,8 МПа
419Давление паров (мм.рт.ст.)0,000000001 мм.рт.ст. (при 1591 °C) — графит, 0,00000001 мм.рт.ст. (при 1690 °C) — графит, 0,0000001 мм.рт.ст. (при 1800 °C) — графит, 0,000001 мм.рт.ст. (при 1922 °C) — графит, 0,00001 мм.рт.ст. (при 2160 °C) — графит, 0,0001 мм.рт.ст. (при 2217 °C) — графит, 0,001 мм.рт.ст. (при 2396 °C) — графит, 0,01 мм.рт.ст. (при 2543 °C) — графит, 0,1 мм.рт.ст. (при 2845 °C) — графит, 1 мм.рт.ст. (при 3214 °C) — графит, 10 мм.рт.ст. (при 3496 °C) — графит, 100 мм.рт.ст. (при 4373 °C) — графит
420Давление паров (Па)
421Стандартная энтальпия образования ΔH0 кДж/моль (при 298 К, для состояния вещества – твердое тело) – графит, 717 кДж/моль (при 298 К, для состояния вещества – газ) – графит,

1,828 кДж/моль (при 298 К, для состояния вещества – твердое тело) – алмаз

422Стандартная энергия Гиббса образования ΔG0 кДж/моль (при 298 К, для состояния вещества – твердое тело) – графит, 2,833 кДж/моль (при 298 К, для состояния вещества – твердое тело) – алмаз
423Стандартная энтропия вещества S5,74 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – графит, 158 Дж/(моль·K) (при 298 К, для состояния вещества – газ) – графит,

2,368 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – алмаз

424Стандартная мольная теплоемкость Cp8,54 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – графит, 20,8 Дж/(моль·K) (при 298 К, для состояния вещества – газ) – графит,

6,117 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – алмаз

425Энтальпия диссоциации ΔHдисс
426Диэлектрическая проницаемость
427Магнитный типДиамагнитный материал
428Точка Кюри
429Объемная магнитная восприимчивость-1,4·10-5 – графит
430Удельная магнитная восприимчивость-6,2·10-9 – графит
431Молярная магнитная восприимчивость-5,9·10-6 см3/моль (при 298 K) – графит, -6,0·10-6 см3/моль (при 298 K) – алмаз
432Электрический типПроводник – графит
433Электропроводность в твердой фазе0,1·106 См/м – графит
434Удельное электрическое сопротивление7,837 мкОм·М (при 20 °C) – графит
435Сверхпроводимость при температуре
436Критическое магнитное поле разрушения сверхпроводимости
437Запрещенная зона
438Концентрация носителей заряда
439Твёрдость по Моосу1-2 – графит, 10 – алмаз
440Твёрдость по Бринеллю
441Твёрдость по Виккерсу
442Скорость звука17500 м/с (при 20°C, состояние среды — кристаллы, ось L100) – алмаз, 12800 м/с (при 20°C, состояние среды — кристаллы, ось S100) – алмаз, 18600 м/с (при 20°C, состояние среды — кристаллы, ось L111) – алмаз, 11600 м/с (при 20°C, состояние среды — кристаллы, ось S110) – алмаз
443Поверхностное натяжение
444Динамическая вязкость газов и жидкостей
445Взрывоопасные концентрации смеси газа с воздухом, % объёмных
446Взрывоопасные концентрации смеси газа с кислородом, % объёмных
446Предел прочности на растяжение
447Предел текучести
448Предел удлинения
449Модуль Юнга1050 ГПа — алмаз
450Модуль сдвига478 ГПа – алмаз
451Объемный модуль упругости442 ГПа – алмаз
452Коэффициент Пуассона0,1 – алмаз
453Коэффициент преломления2,417 (при нормальных условиях для линии D, длина волны которой приближенно равна 0,5893 μ) – алмаз белый

Немного о теплопроводности

Под теплопроводностью в физике понимают перемещение энергии в объекте от более нагретых мельчайших частиц к менее нагретым. Благодаря этому процессу выравнивается температура рассматриваемого предмета в целом. Величина способности проводить тепло характеризуется коэффициентом теплопроводности. Данный параметр равен количеству тепла, которое пропускает через себя материал толщиной 1 метр через площадь поверхности 1 м2 в течение одной секунды при единичной разнице температур.

МатериалКоэффициент теплопроводности, Вт/(м*К)
Серебро428
Медь394
Алюминий220
Железо74
Сталь45
Свинец35
Кирпич0,77

Медь обладает коэффициентом теплопроводности 394 Вт/(м*К) при температуре от 20 до 100 °С. Соперничать с ней может только серебро. А у стали и железа этот показатель ниже в 9 и 6 раз соответственно (см. таблицу). Стоит отметить, что теплопроводность изделий, изготовленных из меди, в значительной мере зависит от примесей (впрочем, это касается и других металлов). Например, скорость проводимости тепла снижается, если в медь попадают такие вещества, как:

  • железо;
  • мышьяк;
  • кислород;
  • селен;
  • алюминий;
  • сурьма;
  • фосфор;
  • сера.

Медная проволока

Если добавить к меди цинк, то получится латунь, у которой коэффициент теплопроводности намного ниже. В то же время добавление других веществ в медь позволяет существенно снизить стоимость готовых изделий и придать им такие характеристики, как прочность и износостойкость. К примеру, для латуни характерны более высокие технологические, механические и антифрикционные свойства.

Поскольку для высокой теплопроводности характерно быстрым распространение энергии нагрева по всему предмету, медь получила широкое применение в системах теплообмена. На данный момент из нее изготавливают радиаторы и трубки для холодильников, вакуумных установок и автомашин для быстрого отвода тепла. Также медные элементы применяют в отопительных установках, но уже для обогрева.

Медный радиатор отопления

Чтобы поддерживать теплопроводность металла на высоком уровне (а значит, делать работу устройств из меди максимально эффективной), во всех системах теплообмена используют принудительный обдув вентиляторами. Такое решение вызвано тем, что при повышении температуры среды теплопроводность любого материала существенно понижается, ведь теплоотдача замедляется.

Это интересно: Сталь марки 30 — характеристика заготовок согласно ГОСТ

Теплоемкость — железо

Распределение температуры.  

Теплоемкость железа С г представляет эквивалентную переменную теплоемкость, приведенную к температуре у поверхности во.  

Теплоемкость железа и стали при нагреве увеличивается. Например, при комнатной температуре теплоемкость железа 0 111 ккал / кг-град, при температуре 1200 С она увеличивается до 0 16 ккал / цг-град. Это значит, что при высоких температурах нагрев происходит медленнее и тепла затрачивается больше.  

Стр — теплоемкость железа, равная 0 12 кал / кг С.  

Учитывая же, что теплоемкость железа или стали равна 0 115, станет вполне понятным, что температура, получающаяся в ( результате трения лент Ферадо о шайбы барабана, достигнет колоссальных размеров и даже водяное, а тем более воздушное охлаждение не в состоянии будет отвести полностью эту теплоту.  

Теплоемкость твердых сплавов приблизительно в два раза ниже теплоемкости железа.  

Атомная теплоемкость железа.| Схема установки для определения теплопроводности металлических стержней. / — 6 — термопары. 7 — дьюаровский сосуд. 8 — печь. 9 — гальванометр. 10 — стержень. / / — кожух.  

На рис. 6 показано изменение атомной теплоемкости железа в зависимости от температуры. Теплоемкость железа достигает максимального значения в точке Аг, затем резко уменьшается; в точке А3 вновь уменьшается, а затем слегка увеличивается в а точке А и снижается в точке плавления. Резкое возрастание теплоемкости вблизи точки Кюри объясняется изменением магнитного состояния железа.  

Температура плавления 5 равна 1808 К, энтальпия плавления составляет 1 536 104 Дж / моль. Теплоемкость железа в жидком состоянии превышает его теплоемкость в кристаллическом состоянии примерно на 1 3 Дж / К моль.  

Теплоемкость железа и стали при нагреве увеличивается. Например, при комнатной температуре теплоемкость железа 0 111 ккал / кг-град, при температуре 1200 С она увеличивается до 0 16 ккал / цг-град. Это значит, что при высоких температурах нагрев происходит медленнее и тепла затрачивается больше.  

В таблицах находим величины теплоемкостей серы п железа. Для железа суд 0 46 кдж / кг град; килограмм-атомная теплоемкость железа равна 0 46 — 55 85 25 7 кдж / кг-ат-град. Килограмм-атомная теплоемкость серы равна 22 6 кдж / кг-ат-град.  

При увеличении или уменьшении каким-либо способом количества тепла, содержащегося в теле, увеличивается или уменьшается также температура тела. Но для одинакового изменения температуры в различных по составу телах равного веса требуются различные количества теплоты. Так, например, 1 кг воды требует примерно в 9 раз больше тепла, чем 1 кг железа при одинаковой степени нагре-тости. На этом основании говорят, что теплоемкость железа составляет около одной десятой теплоемкости воды. Способность воспринимать тепло зависит от физических свойств вещества. Количество тепла, необходимое для изменения температуры 1 кг вещества на 1 С, называется удельной теплоемкостью вещества или просто теплоемкостью.  

При сообщении телу теплоты или, наоборот, отнятии ее у тела происходит увеличение или уменьшение температуры этого тела. Но для одинакового изменения температуры различных по составу тел равной массы требуются различные количества теплоты. Так, 1 кг воды требует примерно в 9 раз больше теплоты, чем 1 кг железа, при одинаковой степени нагретости. На этом основании говорят, что теплоемкость железа составляет около 0 1 теплоемкости воды и, следовательно, теплоемкость зависит от физических свойств вещества.  

В большинстве случаев шаровая молния оплавляет или испаряет несколько граммов или даже доли грамма металла. Автор письма подробно описал размеры лунки и специально отметил, что наплывов металла не было: металл испарился. Предполагая, что углубление было в виде параболоида вращения, находим, что испарилось около 0 22 г металла. Теплоемкость железа равна 0 71 Дж / ( г — К) в твердом и 0 84 Дж / ( г — К) в жидком состоянии. Точки плавления и кипения равны 1500 и 2900 С, а теплота плавления и парообразования — соответственно 269 и 6270 Дж / г. В результате оказывается, что для испарения 0 22 г железа требуется не менее 2 кДж тепла.  

Недостатки высокой теплопроводности меди и ее сплавов

Медь имеет гораздо большую стоимость, чем алюминий или латунь. Но между тем этот материал имеет ряд недостатков, которые связаны с его положительными сторонами.Высокая теплопроводность этого металла вынуждает к созданию специальных условий для его обработки. То есть медные заготовки необходимо нагревать более точно, нежели сталь. Кроме этого часто, перед началом обработки предварительный или сопутствующий нагрев.Нельзя забывать о том, что трубы, изготовленные из меди, подразумевают то, что будет проведена тщательная теплоизоляция. Особенно это актуально для тех случаев, когда из этих труб собрана система подачи отопления. Это значительно удорожает стоимость выполнения монтажных работ.Определенные сложности возникают и при использовании газовой сварки. Для выполнения работе требуется более мощный инструмент. Иногда, для обработки меди толщиной в 8 – 10 мм может потребоваться использование двух, а то и трех горелок. При этом одной из них выполняют сварку медной трубы, а остальные заняты ее подогревом. Ко всему прочему работа с медью требует большего количества расходных материалов.

Работа с медью требует использования и специализированного инструмента. Например, при резке деталей, выполненных из бронзы или латуни толщиной в 150 мм потребуется резак, который может работать с сталью с большим количеством хром. Если его использовать для обработки меди, то предельная толщина не будет превышать 50 мм.

Теплопроводность материалов

Ярко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

Читать также: Можно ли сверлить шуруповертом бетонную стену

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Основные определения

Явление теплопроводности состоит в переносе теплоты структурными частицами вещества — молекулами, атомами, электронами — в процессе их теплового движения. В жидкостях и твердых телах- диэлектриках — перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества. В газообразных телах распространение теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих различную скорость теплового движения. В металлах теплопроводность осуществляется главным образом вследствие движения свободных электронов.

В основной зеком теплопроводности входит ряд математических понятий, оп­ределения которых, целесообразно напомнить и пояснить.

Температурное поле — это со­вокупности значений температуры во всех точках тела в данный момент време­ни. Математически оно описывается ввиде t = f(x, y, z, τ). Различают стационарное температурное поле, когда температура во всех точках тела не зависит от времени (не изменяется с течением времени), и нестационарное температурное поле. Кроме то­го, если температура изменяется только по одной или двум пространственным координатам, то температурное поле на­зывают соответственно одно- или двух — мерным.

Изотермическая поверхность – это геометрическое место точек, температура в которых одинакова.

Градиент температуры — grad t есть вектор, направленный по нор­мали к изотермической поверхности и численно равный производной от тем­пературы по этому направлению.

Согласно основному закону тепло­проводности — закону Фурье (1822 г.), вектор плотности теплового потока, передаваемого теплопроводностью, пропорционален градиенту температуры:

q = — λ grad t, (3)

где λ — коэффициент теплопро­водности вещества; его единица измерения Вт/(м·К).

Знак минус в уравнении (3) ука­зывает на то, что вектор q направлен противоположно вектору grad t, т.е. в сторону наибольшего уменьшения температуры.

Тепловой поток δQ через произволь­но ориентированную элементарную пло­щадку dF равен скалярному произведе­нию вектора q на вектор элементарной площадки dF, а полный тепловой поток Q через всю поверхность F определяется интегрированием этого произведения по поверхности F:

(4)

КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ

Коэффициент теплопроводности λ в законе Фурье (3) характеризует спо­собность данного вещества проводить теплоту. Значения коэффициентов тепло­проводности приводятся в справочниках по теплофизическим свойствам веществ. Численно коэффициент теплопроводности λ = q/grad t равен плотности теплового потока q при градиенте температуры grad t = 1 К/м. Наиболь­шей теплопроводностью обладает легкий газ — водород. При комнатных условиях коэффициент теплопроводности водорода λ = 0,2 Вт/(м·К). У более тяжелых газов теплопроводность меньше — у воз­духа λ = 0,025 Вт/(м·К), у диоксида уг­лерода λ = 0,02 Вт/(м·К).

Наибольшим коэффициентом теплопроводности обладают чистые серебро и медь: λ = 400 Вт/(м·К). Для углеродистых сталей λ = 50 Вт/(м·К). У жидкостей коэффициент теплопроводности, как правило, меньше 1 Вт/(м·К). Вода является одним из лучших жидких проводников теплоты, для нее λ = 0,6 Вт/(м·К).

Коэффициент теплопроводности неметаллических твердых материалов обычно ниже 10 Вт/(м·К).

Пористые материалы – пробка, различные волокнистые наполнители типа органической ваты – обладают наименьшими коэффициентами теплопроводности λ<0,25 Вт/(м·К), приближающимся при малой плотности набивки к коэффициенту теплопроводности воздуха, наполняющего поры.

Значительное влияние на коэффициент теплопроводности могут оказывать температура, давление, а у пористых материалов ещё и влажность. В справочниках всегда приводятся условия, при которых определялся коэффициент теплопроводности данного вещества, и для других условий эти данныеиспользовать нельзя. Диапазоны значений λ для различных материалов приведены на рис. 1.

Рис.1. Интервалы значений коэффициентов теплопроводности различных веществ.

Методы изучения параметров теплопроводности

При проведении изучения параметров теплопроводности надо помнить о том, что характеристики конкретного металла или его сплавов от метода его выработки. Например, параметры металла полученного с помощью литья могут существенно отличаться от характеристик материала изготовленного по методам порошковой металлургии. Свойства сырого металла коренным образом отличаются от того, который прошел через термическую обработку.

Термическая нестабильность, то есть преобразование отдельных свойств металла после воздействия высоких температур является общим для практически всех материалов. Как пример можно привести то, что металлы после длительного воздействия разных температур способны достичь разных уровней рекристаллизации, а это отражается на параметрах теплопроводности.

Структура стали после термической обработки

Можно сказать следующее – при проведении исследований параметров теплопроводности необходимо использовать образцы металлов и их сплавов в стандартном и определенном технологическом состоянии, например, после термической обработки.

Например, существуют требования по измельчению металла для проведения его исследований с применением способов термического анализа. Действительно, такое требование существует при проведении ряда исследований. Бывает и такое требование – как изготовление специальных пластин и многие другие.

Один из методов называют релакционно-динамическим. Он предназначен для выполнения массовых измерений теплоемкости у металлов. В этом методе фиксируется переходная кривая температуры образца между его двумя стационарными состояниями. Этот процесс является следствием скачка тепловой мощности вводимой в испытуемый образец.

Такой метод можно назвать относительным. В нем используются испытуемый и сравнительный образцы. Главное заключается в том, что бы у образцов была одинаковая излучающая поверхность. При проведении исследований температура, воздействующая на образцы должна изменяться ступенчато, при этом по достижении заданных параметров необходимо выдержать определенное количество времени. Направление изменения температуры и ее шаг должен быть подобран таким образом, что бы образец, предназначенный для испытаний, прогревался равномерно.

В эти моменты тепловые потоки сравняются и отношение теплопередачи будет определяться как разность скоростей колебаний температуры.Иногда в процессе этих исследований источник косвенного подогрева исследуемого и сравнительного образца.На один из образцов могут быть созданы дополнительные тепловые нагрузки в сравнении со вторым образцом.

Как правильно сделать расчет тепловой мощности

Грамотное обустройство системы отопления в доме не может обойтись без теплового расчета мощности отопительных устройств необходимых для обогрева помещений. Существуют простые проверенные способы расчета тепловой отдачи отопительного прибора. необходимой для обогрева комнаты. Здесь также учитывается расположение помещения в доме по сторонам света.

  • Южная сторона дома обогревается на метр кубический помещения 35 Вт. тепловой мощности.
  • Северные комнаты дома на метр кубический обогреваются 40 Вт. тепловой мощности.

Для получения общей тепловой мощности необходимой для обогрева помещений дома надо реальный объем комнаты умножить на представленные величины и сложить их по количеству комнат.

Важно! Представленный вид расчета не может быть точным, это укрупненные величины, ими пользуются для общего представления необходимого количества отопительных приборов. Расчет биметаллических устройств отопления, а также алюминиевых батарей проводится исходя из параметров указанных в паспортных данных изделия. По нормативам секция такой батареи равняется 70 единицам мощности (DT)

По нормативам секция такой батареи равняется 70 единицам мощности (DT)

Расчет биметаллических устройств отопления, а также алюминиевых батарей проводится исходя из параметров указанных в паспортных данных изделия. По нормативам секция такой батареи равняется 70 единицам мощности (DT).

Что это такое, как понимать? Паспортный тепловой поток секции батареи может быть получен при соблюдении условия подачи теплового носителя с температурой 105 градусов. Для получения в обратной системе отопления дома температуры 70 градусов. Начальная температура в комнате принимается за 18 градусов тепла.

DT= (температура носителя подачи + температура носителя обратки)/2, минус комнатная температура. Затем данные в паспорте изделия умножить на коэффициент поправочный, которые для разных значений DT приводятся в специальных справочниках. На практике это выглядит так:

  • Система отопительная работает в прямой подаче 90 градусов в обработке 70 градусов, комнатная температура 20 градусов.
  • По формуле получается (90+70)/2-20=60, DT= 60

По справочнику ищем коэффициент для этой величины, он равен 0,82. В нашем случае тепловой поток 204 умножаем на коэффициент 0,82, получаем реальный поток мощности = 167 Вт.

Недостатки высокой теплопроводности меди и ее сплавов

Медь обладает куда более высокой стоимостью, чем латунь или алюминий. При этом у данного металла есть свои недостатки, напрямую связанные с его достоинствами. Высокая теплопроводность приводит к необходимости создавать специальные условия во время резки, сварки и пайки медных элементов. Так как нагревать медные элементы нужно намного более концентрировано по сравнению со сталью. Также часто требуется предварительный и сопутствующий подогрев детали.

Не стоит забывать и о том, что медные трубы требуют тщательной изоляции в том случае, если из них состоит магистраль или разводка системы отопления. Что приводит к увеличению стоимости монтажа сети в сравнении с вариантами, когда применяются другие материалы.

Пример теплоизоляции медных труб

Следует сказать и о необходимости использования специальных инструментов. Так, для резки латуни и бронзы толщиной до 15 см понадобится резак, способный работать с высокохромистой сталью толщиной в 30 см. Причем этого же инструмента хватит для работы с чистой медью толщиной всего лишь в 5 см.

Плазменная резка меди

Коэффициенты теплопередачи сталей

Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.

Простые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.

Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла. Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).

Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка. Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали. Она колеблется от 47 до 58 Вт/(м*К).

Теплопроводность стали при различных температурах, как правило, не изменяется сильно. Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).

2 Теплопроводность алюминия и меди – какой металл лучше?

Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.

Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:

  • плотность (удельный вес) алюминия меньше в 3 раза;
  • стоимость – ниже в 3,5 раза.

Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).

В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.

Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).

Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий